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Dept. de Automática y Computación

Universidad Pública de Navarra
Campus Arrosadı́a s/n

31006 Pamplona, SPAIN
email: daniel.morato@unavarra.es

Abstract

In this paper we provide an analysis of end-to-end delay in OBS networks and a large deviations approx-
imation. The analysis is based on an exponential approximation of the OBS router blocking time and on the
assumption of Poisson arrivals in routers along the path from source to destination. On the other hand, a light-
load assumption is performed, namely, waiting time is mainly due to residual life of the output wavelengths and
not to buffering.
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I. INTRODUCTION AND PROBLEM STATEMENT

Optical Burst Switching (OBS) is a transfer mode that allows the transfer of several IP packets in a single burst.
By doing so, the transmission constraints associatted to small packets in the optical domain are circumvented.
On the other hand, a Burst Control Packet (BCP) is sent along the route between the source and destination and
before the burst itself is released. This allows for unconfirmed ”on-the-fly” resource reservation for the optical
bursts. Thus, OBS is a transfer mode that is halfway between circuit switching and pure packet switching. In
this paper, we will assumme that wavelenghts are reserved for exactly the burst transmission time (Just Enough
Time - JET)[1].

If no wavelength is available, the incoming bursts will be blocked and a Fiber Delay Line (FDL) will be
reserved using DR. If either no FDLs are available or the blocking time of the output port is larger than the
delay time of the available FDLs then the burst will be dropped. Therefore, not only the burst dropping rate is
influenced by the number of wavelengths, but also by their blocking time. In a previous paper [2] we show that
the blocking time of an optical burst is exponentially distributed, regardless of the burst size distribution, and
as long as the first moment is finite. In fact, a variety of burst size distributions may arise from the different
burst assembly algorithms used at the (burstifier). Such burstifiers are functional units located at the edges of
the optical network, that actually perform the grouping of several IP packets into a single burst. For example,
the burst size turns out to be Gaussian for timer-based schemes [3]. Other non-Gaussian burst size distributions
that have also been considered in the literature are the exponential distribution [4], [5], [6], the hyperexponential
distribution [7], and the Pareto distribution [7]

Precisely, the above studies deal with the analysis of a single OBS router [4], [5], [6], [7], specially concerning
blocking probability. In this paper, we will focus on the end-to-end performance of an OBS network comprising
several routers in the route from source and destination. It is expected that time-constrained traffic, such as
interactive video traffic, will be carried by the optical network. Furthermore, non-interactive services such as
TCP services are also influenced by end-to-end delay, since loss detection is timer-based. Eventually, expiration of
ACK timers can make the TCP connection enter congestion avoidance, implying severe throughput degradation.
In conclusion, knowledge of the end-to-end delay performance of an OBS network is of fundamental importance
for the deployment of time-constrained services over all-optical WDM networks.

A. Network scenario

Figure 1 shows the scenario under analysis. A number of N OBS routers are traversed by the optical burst
from the source burstifier (aggregation) to the destination burstifier (deaggregation). The delay incurred is the
sum of the delay contributions at each OBS router.

The following assumptions will be made:
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Fig. 1. Network scenario

• The OBS routers have full wavelength conversion capability. Thus, an input burst will be blocked if and
only if all wavelengths at the desired output port are occupied. Such blocking probability, regardless of the
burst length distribution, is given by the Erlang-B formula [7].

• The routers along the path between source and destination remain stationary as far as the bloccking
probability is concerned. As a result, the blocking probability along the path can be characterized by a
vector (p1, . . . , pN ). The blocking probability pi, i = 1, . . . , N is determined by the number of wavelengths
at the output port and the traffic load.

• The time offset between BCP and burst remain constant along the path, i. e., the BCP is buffered to
compensate for waiting times of blocked bursts.

• The number of fiber delay lines is large enough to accomodate any blocked burst and there is no recircu-
lation. The FDL is also capable of providing any blocking time delay and it is variable length. Thus, as
soon as any wavelength in the output port becomes available, the burst is immediately relayed to the free
wavelength.

• The effect of waiting time in queue is limited to the residual life of the bursts in service. This a light-load
approximation that simplifies the analysis.

With this assumptions in mind, the end-to-end delay is given by the sum of blocking times along the path
form source to destination. In the following section, an analysis of the blocking time distribution is provided.

II. BLOCKING TIME DISTRIBUTION

Let us consider that the burst transmission time distribution has a finite first moment equal to EX . Let Rj be
the residual time in service (residual life) of the burst being transmitted in wavelength j, where j = 1, . . . , M ,
being M the number of wavelengths per port (servers). The output port will be blocked if and only if j = M .
Let Y be the random variable that represents the blocking time for an incoming burst. We wish to derive
P (Y > y), y > 0, i.e. the survival function of the blocking time. Since burst arrivals are Poisson, and due to the
PASTA property, the blocking time is given by the minimum of the residual lives of the M bursts in service,
namely {Y > y} = minj=1,...,M{Rj > y}. Since bursts sizes are independent and identically distributed

P (Y > y) =

M
∏

j=1

P (Rj > y) = P (R1 > y)M (1)

Equation (1) provides an expression for the blocking time distribution (survival function). Note that the
blocking time distribution depends on the burst size distribution. Under the weak assumption of finiteness in
the burst size first moment, we will show that the blocking time survival function becomes exponential with
the number of wavelengths (M ).

A. Approximations for the blocking time distribution (residual life)

The density of the residual life of a burst in service (P (R1 > y)), as seen by Poisson arrivals, can be obtained
from the survival function of the service time as follows [8, pp. 172, vol. I]
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since R1 ≥ 0 a. s. From the previous equation and (1)
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For values of M and y such that M ∗P (X1 > y) ∼ M (note that this happens for values of y not in the tail
of the distribution and for moderate to large number of wavelengths per port), (5) and (6) yield
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≈ e
−
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In order to derive the last equation, it has been taken into account that e−x = 1−x+o(x). This approximation
is more accurate the smaller the value of y and the larger the value of N . Further results are provided in [2],
including exact expressions (eq. 1) for Pareto-distributed and Gaussian-distributed burst sizes.

III. END-TO-END ANALYSIS

In what follows, it will be assummed that all OBS routers will be assummed to have the same input traffic
load, same number of ports and same number of wavelengths per port.

Let us denote by Xi the random variable that provide the blocking time at OBS router i, i = 1, . . . , N . Let
Y = X1 + . . . + XN denote the end-to-end delay. Sincec the network is homogeneous the Xis are i.i.d and,
following (7), the blocking time is exponential with rate λ = M/EX . Since the blocking time is null if the
burst is not blocked, the density of X1 is given by

fXi
(x) = pλe−λx. (8)

where p = p1 = . . . = pN is the blocking probability of any of the OBS routers along the path, due
to the homogeneity assumption. In order to obtain the distribution of Y let us condition to the event Ai =
{exactly i out of N OBS routers are blocked}, i = 1, . . . , N . Then, for any a > 0

P (X1 + . . . + XN ≥ Na) =
N

∑

i=0

P (X1 + . . . + XN ≥ Na|Ai)P (Ai) (9)

and, since P (Ai) is a binomial measure,

P (X1 + . . . + XN ≥ Na) =
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N

i

)

pi(1 − p)N−i. (10)

In order to obtain an expression for the conditional probability, note that, since the Xis are i.i.d exponential
random variables, then the partial sums X1 + . . . + Xi are Erlang random variables E(λ, i). As a result,
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In the following section, we make use of large deviations techniques to provide a tail approximation.



IV. LARGE DEVIATIONS APPROXIMATION

By Chernoff’s Theorem for i.i.d random variables

P (X1 + . . . + XN ≥ Na) = e−Nl(a)+o(N) (12)

being

l(a) = supθ(θa − logEeθX1). (13)

Equation (12) can be used as an approximation for the tail of the end-to-end delay distribution, with large
N . Let us first derive the moment generating function of X1,

EeθX1 = (1 − p)0 + p

∫

∞

0

λe(θ−λ)xdx =
pλ

λ − θ
(14)

if θ < λ. On the other hand, let us consider the map

f(θ) = θa − log

(

pλ

λ − θ

)

(15)

and let us obtain the maximum in the interval θ ∈ (0, λ). Such maximum is attained in θ∗ = λ − 1/a. Now,
going back to (13) we obtain

l(a) = f(θ∗) = aλ − 1 − log(apλ) (16)

and, considering (12), it turns out that

P (X1 + . . . + XN ≥ Na) ≈
1

apλ
e−N(aλ−1) (17)

which approximates (11).

V. CONCLUSIONS AND FUTURE

In this paper we have provided an analysis and approximation of end-to-end delay in OBS networks, based
on large deviations techniques and under a light-load assumption. The analysis is based on an exponential
approximation of the blocking time distribution, which is insensitive to the burst distribution.
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