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Abstract—In this paper, a Multiresolution Analysis is conducted in order
to study the self-similar features of Optical Burst Switching (OBS) traf-
fic. The scenario consists of an OBS backbone with input traffic from
a large number of Internet users, that generate Poisson-arriving heavy-
tailed bursts. The results show that long-range dependence is preserved
at timescales longer than the burst assembly timeout value while the traffic
variability at short timescales is increased.
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I. INTRODUCTION AND PROBLEM STATEMENT

The advent of terabit optical networks requires the use of an
efficient transfer mode for IP packets. In fact, asynchronous
transmission of IP packets, which have negligible transmis-
sion time, poses a number of challenges regarding synchroniza-
tion and buffering in the all-optical routing elements. Alterna-
tively, Optical Burst Switching (OBS) [1] is based on the prin-
ciple of grouping several IP packets in a single burst, which
can be handled more efficiently. Thus, OBS provides ”coarse
packet switching” service in the optical network, namely a trans-
fer mode which is halfway between circuit switching and pure
packet switching. First, a resource reservation message is sent
along the path from source to destination, so that resources can
be reserved for the incoming burst. Then, the data burst fol-
lows. As a result, OBS does not incur in the overhead of circuit
setup but still resource reservation is performed on a per burst
fashion, thus providing enhanced capabilities for QoS discrimi-
nation beyond pure packet switching. In fact, OBS offers scope
for differentiated quality of service, (MPLS) traffic engineering
and path protection and restoration [2].

Even though the concept of OBS has attracted considerable
research attention there is scarce literature concerning practical
implementations and impact in traffic engineering. In OBS net-
works, since incoming traffic comes in packets, burst assembly
functionality is required at the edges. Ge et al. [3] have recently
proposed a simple algorithm for burst assembly which can be
explained with the aid of figure 1. Packets coming to the optical
cloud are demultiplexed according to their destination in sepa-
rate queues. A timer is started with the first packet in a queue
and, upon timeout expiration, the burst is assembled and relayed
to the transmission queue. As a result, the burst assembly time
is kept within the timeout value independent of network load.
In doing so, large packetization delays due to burst assembly
are avoided, thus circumventing a major drawback of OBS. Fur-
thermore, the fact that bursts are variable length is in accordance
with the OBS paradigm [1].

The above mentioned algorithm provides a simple and effi-
cient way to encapsulate packets in optical bursts and, following
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Fig. 1. Burst assembly algorithm

[3], the traffic self-similarity is reduced. Actually, the concept
of self-similarity involves the definition of a timescale beyond
which the traffic shows scaling behavior. In order to have a bet-
ter understanding of this issue, let us first provide a brief intro-
duction to self-similarity.

A. Self-similarity

Traffic self-similarity (or scaling) is defined as follows: Let
{X(t), t > 0} be the continuous process of number of bytes
transmitted in the interval [0, t) and let Xk = {X(kδ)−X((k−
1)δ), k ≥ 1}, being δ a measurement interval in milliseconds.
Note that Xk denotes the (weakly stationary) discrete process of
number of bytes per time interval δ. Now, consider the aggre-
gated process

X
(m)
i =

1
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mi
∑
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Xk, m > 1, i ≥ 1 (1)

and let ρ(m)(j) with j ≥ 1 be the autocorrelation function
of X

(m)
k . The process Xk is asymptotically second-order self-

similar with H parameter if

lim
m→∞

ρ(m)(j) =
1

2
((j + 1)2H − 2j2H + (j − 1)2H) (2)

where H is the Hurst (or self-similarity) parameter. For
1/2 < H < 1 the autocorrelation function in equation 2 decays
slowly, thus being not summable, and we call Xk long-range
dependent. That is precisely the case for Internet traffic, which
shows dependency in contrast to, for instance, a Poisson traffic.

On the other hand, note that m in equation 1 defines a traffic
timescale. Furthermore, equation 2 states that self-similarity is



an asymptotic property, namely, it only happens when m → ∞.
In practice, there is a cutoff timescale (δ) beyond which the traf-
fic behaves as a stationary self-similar process with constant H
parameter. However, for shorter timescales, the process may
show complex, multifractal behavior. Most importantly, Gross-
glauser and Bolot [4] show that the queueing performance is
determined by the ”timescale of interest” which is related to the
buffer size. For short buffer sizes, only the short timescales de-
termine queueing performance. Actually, self-similarity is only
relevant in the busy period timescales [5]. In fact, a queueing
system is regenerated (reset) when the number of packets in the
queue reaches null. Thus, only correlations in the timescale of
the busy period are relevant. For short buffers or large buffers
with low and intermediate utilization factors, the statistical fea-
tures of Internet traffic at short timescales are responsible for
queueing performance [6]. Thus, a comprenhensive analysis
of self-similarity should also include the timescales for which
the traffic shows self-similarity. Precisely, a multiresolution
approach is adopted in this paper in order to determine such
timescales, for the case of OBS traffic.

B. Contribution

For a thorough treatment of self-similarity in network traffic
the reader is directed to [7]. In the remaining of the paper we
will use the term ”self-similar” for brevity to refer to ”asymp-
totic second-order self-similar”. The main contributions of this
paper follow. First, we further analyze the implications of burst
switching in self-similarity to conclude that the scaling behav-
ior of the process is indeed preserved in timescales longer than
the burst assembly timeout. In smaller timescales the traffic pro-
cess is ”whitened” due to burst sequencing and shuffling before
the optical transmission queue. Secondly, and opposite to this
beneficial effect, an increase in the marginal distribution coeffi-
cient of variation is observed. Therefore, the choice of the burst
assembly timeout value becomes of fundamental importance in
practical implementations of OBS networks.

II. METHODOLOGY

We performed extensive simulations of the burst assembly
system depicted in figure 1, considering an input traffic pro-
cess Xin

k which is generated by aggregation of Poisson-arriving
heavy-tailed flows. Willinger et al. [8] show that the multiplex
of on-off sources with heavy-tailed on-off periods turns out to
have self-similar features. Furthermore, Tsybakov and Geor-
ganas [9] show that the resulting traffic multiplex is asymptot-
ically second-order self-similar, as long as the on-period of the
individual flows is heavy-tailed. A heavy-tailed random variable
R has a distribution tail with the form

P (R > r) ∼

(

K

r

)α

, 1 < α < 2 (3)

If 1 < α < 2 then it turns out that 1/2 < H = (3 − α)/2 <
1. In [10] such model is used to explain Internet traffic self-
similarity. Both size (bytes) and duration of WWW connections
can be modeled as heavy-tailed random variables (Pareto), with
α values 1.15 for size and 1.2 for duration. Therefore, Internet
traffic turns out to be asymptotically second-order self-similar,

since an important part of it comes from a multiplex of WWW
connections.

A traffic generator of this sort presents a key advantage for
our analysis since it allows for two demultiplexing strategies:
i) per-packet demultiplexing, which is performed by randomly
routing packets to any of the burst assembly queues, as in [3];
and ii) per-flow demultiplexing, which is performed by routing
packets considering that packets belonging to the same flow have
the same destination. We note that the second strategy is more
accurate than the first one, since usually a group of IP packets
belong to the same file. Thus, the burst assembly queues are not
fed by a random sampling of the incoming process but instead
by Poisson arriving heavy-tailed flows. Assuming random des-
tinations, the arrival rate is equal to the input traffic rate divided
by the number of burst assembly queues.

On the other hand, a time interval of 1 ms. was selected
to form the counting process of bytes per interval for both in-
coming and outgoing traffic, X in

k and Xout
k in figure 1 respec-

tively, whose self-similarity features are measured by means of
the Abry-Veitch estimator [11]. Such estimator is based on a
Multiresolution Analysis (MRA), which consists of decomposi-
tion of the process Xk in its details dx(j, k) and approximations
ax(j, k) from the shortest to the longest time scale j, namely
from j = 1 to j = log2(N), being N the total number of sam-
ples in Xk. The coefficient |dx(j, k)|2 provides the “energy per
scale” or energy of the process about the time instant 2jk and
frequency 2−jf0 where f0 depends on the choice of the mother
wavelet [11]. By plotting the energy per scale

V (j) =
1

nj

∑

k

|dx(j, k)|2 (4)

versus the scale j in log-linear scales (also known as scale-
gram or log-scale diagram) 1 we can determine the scaling be-
havior of Xk. More specifically, if the process Xk is self-similar
it can be shown that

V (j) ∼ (2H − 1)j. (5)

The use of the Abry-Veitch estimator is most convenient since
it estimates not only the Hurst parameter but also the timescales
for which the process shows scaling behavior [7, chapter 2].

III. RESULTS AND DISCUSSION

Figure 2 shows the energy per scale of the traffic entering the
optical network after OBS burst assembly, for an input traffic
with Hin = 0.898 (α = 1.2 in equation 3) and timeout values
of 2, 4, 8 and 16 ms. The scale in the x-axis is translated to mil-
liseconds for clarity. Results for per-flow and per-packet demul-
tiplexing are identical. Thus, only one scalegram per timeout
value is shown in figure 2. The process shows a scaling behavior
(with Hout ∼ Hin) but only from a cutoff value which is in the
vicinity of the timeout value tout. However, the original traffic
Xin

k shows a scaling behavior from a much lower cutoff value
(1 ms.), which is close to the packet interarrival time within a
burst. Figure 2 (left) clearly indicates that the self-similarity of

1See [7, chapter 2] for a number of examples on the use of wavelets to detect
scaling regions.



the process Xin
k is preserved in timescales longer than the burst

assembly timeout value.
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Fig. 2. Energy per scale

For further proof and clarity we show the R/S plot of Xout
k for

the different timeout values in figure 3. The scale in the x-axis
is also translated to milliseconds. The R/S plot is used in [3] as
an estimator of the H parameter. For a self-similar process

log(R(n)/S(n)) ∼ Hlog(n) (6)

where n is the number of samples in the rescaled sample vari-
ability or adjusted range R and sample variance S2 [12]. Thus,
for large n the slope of the least squares fitted line gives H . We
note that for values of n larger than the corresponding timeout
value the R/S plots have the same slope, thus indicating that the
self-similarity of X in

k is preserved in long timescales.
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The results can be explained as follows: On one hand, for
timescales shorter than the timeout value, the original traffic pro-
cess (Xin

k ) is divided in chunks of data (optical bursts). We note

that Xin
k shows scaling behavior at those short timescales (see

figure 2). Such (optical) bursts are then transmitted sequentially
and are possibly shuffled due to statistical multiplexing with
other bursts. However, the self-similar features shown by Inter-
net traffic are caused by the concurrent transmission of heavy-
tailed traffic bursts, like in an M/G/∞ system [8–10]. Thus,
Xout

k cannot present self-similar features. On the other hand, for
longer timescales, the output process Xout

k is not altered at all
with respect to the original process X in

k and the self-similarity
is therefore preserved.

More precisely, let m′ be the value of m such that m′δ >
Tout, where Tout is the timeout value. We note that m′ is the first
aggregation scale larger than the burst assembly timeout value.
For timescales beyond m′δ the aggregated process (X

(m)
i )in

and (X
(m)
i )out (equation 1) are approximately equal in distri-

bution, but for negligible border effects. Therefore,

(X
(m)
i )in ∼=d (X

(m)
i )out, m > m′, i ≥ 1 (7)

where the equality is in distribution.
On the other hand, an increase in the marginal distribu-

tion variability at short timescales is observed. We choose a
timescale of 1 ms, where the output traffic to the optical net-
work Xout

k does not show scaling behavior. In such timescale,
for timeout values of 2, 4, 8 and 16 ms the traffic coefficient
of variation is equal to 0.0957, 0.306, 0.881, 3.906 respectively,
the index for dispersion of counts (IDC) is equal to 181185.65,
518150.68, 1490057.08 and 8345361.24 respectively and the
peak-to-mean ratio is equal to 2.13, 3.47, 5.54 and 13.67 re-
spectively. For the original traffic process X in

k the values of
coefficient of variation, IDC and peak-to-mean ratio in the same
timescale are 0.0053, 9430.11 and 1.24 respectively. We note
that it is intuitively clear that the instantaneous burstiness is in-
creased in short timescales due to the effect of grouping sev-
eral packets in the same burst. As a conclusion, while the scal-
ing region of the input traffic process X in

k is shifted to longer
timescales the instantaneous traffic variability is increased in
shorter timescales, thus compensating for correlation decrease.
Such variability increase may have a strong impact in queueing
performance [13].

IV. CONCLUSIONS AND FUTURE WORK

In this paper we provide an explanation of the apparent de-
crease in self-similarity due to optical burst switching. The burst
assembly timeout becomes the lower cutoff value beyond which
scaling behavior of the OBS traffic is observed. On the other
hand, the higher the timeout value the higher the marginal dis-
tribution coefficient of variation in short timescales. In this way
correlation decrease compensates with instantaneous variabil-
ity increase. Since queueing delay increases with both correla-
tion and instantaneous variability, our findings suggest that there
may be a trade-off timeout value that maximizes performance,
which is subject of our current research.
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