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Abstract— The blocking time distribution for an OBS router
is obtained, under the assumption of Poisson-arriving bursts
with Pareto, Gaussian and Exponential burst size distributions.
Analytical expressions are provided as a function of number of
wavelengths per port. Such expressions can be used to dimension
Fiber Delay Lines (FDLs) and to perform end-to-end delay
estimation. On the other hand, we show that the blocking time
distribution becomes exponential as the number of wavelengths
increases, regardless of the burst size distribution. Since the burst
size distribution is determined by the burst assembly algorithm at
the network edges, we conclude that the burst assembly algorithm
will have no influence on both burst blocking probability and burst
blocking time in future DWDM networks.

Keywords: Optical Burst Switching, burst blocking time distri-
bution.

I. INTRODUCTION AND PROBLEM STATEMENT

The advent of terabit optical networks requires the use of
an efficient transfer mode for IP packets. In fact, switching
IP packets, which have negligible transmission time, poses a
number of challenges regarding synchronization and buffering
in the all-optical routing elements. Alternatively, Optical Burst
Switching (OBS) [1] provides ”coarse packet switching” ser-
vice in the optical network, namely a transfer mode which is
halfway between circuit switching and pure packet switching.
First, a control packet is sent along the path from source to
destination, so that resources can be reserved for the incoming
burst. Then, the data burst follows after an offset time. Among
other features, OBS offers scope for differentiated quality of
service, traffic engineering (GMPLS) and path protection and
restoration [2].

Central to the OBS concept is the separation between data
and control plane. Reservation messages are sent in separate
wavelengths and suffer O/E/O conversion in the OBS router,
since they are processed in the electronic domain. On the
contrary, the burst is switched ”cut-through” without leaving the
optical domain. At any OBS router, a wavelength on the desired
output link will be reserved using delayed reservation (DR)
[1], i.e., the wavelength will be reserved from the burst arrival
time to the burst departure time. However, if no wavelength
is available, the incoming bursts will be blocked and a Fiber
Delay Line (FDL) will be reserved using DR. If either no
FDLs are available or the blocking time of the output port is
larger than the delay time of the available FDLs then the burst
will be dropped. Therefore, not only the burst dropping rate

is influenced by the number of wavelengths, but also by their
blocking time.

For bufferless OBS routers, the wavelength blocking prob-
ability can be estimated with the Erlang-B formula [3]–[6],
under the assumption of Poisson-arriving bursts and arbitrary
burst size distribution with finite first moment. In a previous
paper [7], we show that the burst arrival process can be assumed
to be Poisson, despite the possible long-range dependence of
incoming traffic. On the other hand, the burst size distribution
depends on the burst assembly algorithm which is used at the
edges of the optical network, where the burst assembly process
takes place. For example, the burst size turns out to be Gaussian
for timer-based schemes [7]. Other non-Gaussian burst size
distributions that have also been considered in the literature are
the exponential distribution [3], [5], [6], the hyperexponential
distribution [4], and the Pareto distribution [4]. Since they all
have a finite first moment, the blocking probability is the same
for all of them, as predicted by the M/G/N/N analysis [8, section
5.5.2].

In this paper, the performance analysis of OBS routers is
extended to the blocking time distribution. Assuming that FDLs
are available in the OBS router, an incoming burst will be
buffered if and only if its blocking time is smaller than the
delay time provided by the FDL. Otherwise, the burst will be
simply dropped. Therefore, knowledge of the blocking time is
essential in order to determine the FDL length (delay time) for
a given drop rate objective. It must be noted that even though
a long maximum delay can reduce the blocking probability,
one needs to keep it as short as possible [3]. Ideally, the
delay incurred by a burst should be as close as possible to
the blocking time, in order to reduce end-to-end delay and
hardware size (1 km. FDLs at 2.5 Gbps line speed are chosen
in [9]). On the other hand, the blocking time has an influence
on the total end-to-end delay for a burst. It is expected that
time-constrained traffic, such as interactive video traffic, will
be carried by the optical network. Furthermore, non-interactive
services such as TCP services are also influenced by end-
to-end delay, since loss detection is timer-based. Eventually,
expiration of ACK timers can make the TCP connection enter
congestion avoidance, implying severe throughput degradation.
In conclusion, knowledge of the blocking time distribution is a
fundamental issue in the design of cost-effective OBS routers.

Our findings show that only the tail of the blocking time dis-



tribution is affected by the burst size distribution. Furthermore,
as the number of wavelengths per port increases, the blocking
time distribution is approximately exponential. Due to the rapid
optical technology development, the number of wavelengths
per port is expected to increase in the close future. Thus, we
conclude that, for DWDM networks, not only all burst assembly
algorithms are equivalent in terms of blocking probability, but
they are also equivalent in terms of blocking time distribution.

A. Network scenario

Figure 1 shows the scenario under analysis. Since incoming
traffic to the OBS cloud comes in packets, burst assembly
functionality is required at the edges. The edge nodes in charge
of burst assembly will be called burstifiers. An OBS burstifier
maintains separate queues per destination, namely separate
queues per Forward Equivalence Class.

There is a choice of burst assembly algorithms depending on
the type of traffic being transmitted. Timer-based algorithms are
suitable for time-constrained traffic, since an upper bound to
the burst assembly time is enforced. For non time-constrained
bulk traffic, the objective is to improve transmission efficiency,
despite of a larger burst assembly time. For example, a files-
over-lightpaths transmission scheme for non-interactive TCP
traffic is proposed in [10], that serves to reduce the control
packets overhead and increase OBS transmission efficiency.
Such scheme yields Pareto-distributed burst sizes. In conclu-
sion, since different burst size distributions may arise from
the different burst assembly algorithms we do not restrict our
analysis to a single distribution, but, instead, Pareto, Gaussian
and Exponential distributions are considered. On the other hand,
the burst arrival process is assumed to be Poisson [3]–[7].
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Fig. 1. Network reference model

The blocking time distribution for bursts arriving as a Poisson
process is derived analitycally and by simulation. First, we
provide an approximation for the blocking time distribution.
For such approximation (exponential), it is only required that
the burst size distribution has a finite first moment. Thus,
the approximation applies to a broad range of possible burst
size distributions. Additionally, the approximation is better the
larger the number of wavelengths per port. This is consistent
with the current technological trend in DWDM networking.

Second, exact analytical expressions for the blocking time
distribution are obtained, for each of the three burst size
distributions listed above. Such expressions are exact for any
number of wavelengths.

The rest of the paper is organized as follows: in section II
we define the analysis scenario and methodology, section III
presents the analysis and section IV is devoted to results and
discussion, followed by the conclusions that can be drawn from
this paper.

II. METHODOLOGY

For simplicity, we focus on a given output port, where it is
assumed that arrivals are Poisson. Furthermore, an incoming
burst to the output port may be transmitted using any wave-
length. Let N be the number of wavelengths per output port,
which will take on values 8 (CWDM) and 64 (DWDM). For
example, a number of 32 wavelengths per fiber is reported for
a recently developed photonic MPLS router [11].

On the other hand, the output port will be assumed to receive
traffic from a large number of hosts which are sending data
files over the optical network. Depending on the burst assembly
algorithm the burst size distribution will be different. However,
and in order to run simulations and numerical experiments
under the same offered load, the average burst size will be
the same regardless of the burst size distribution. Such average
burst size, which will be denoted by Z, is made equal to the
average file size in the Internet (15 Kbytes), in accordance to
recently reported measurements [12].

A. Pareto distributed burst size

Pareto-distributed burst sizes will arise if a single burst per
file [10] is provided by the burstifier. In such case, the burst
and file sizes are equal in distribution. Note that Z is Pareto-
distributed iff

P (Z > z) = 1 z ≤ K

P (Z > z) = Kαz−α z > K (1)

where α = 1.4 is the decay exponent and K > 0 is the
minimum burst size.

B. Gaussian distributed burst size

Timer-based burstifiers will give raise to (truncated)
Gaussian-distributed burst sizes [7]. To fully characterize the
distribution, the variance coefficient C2

v = σ2/Z
2

is set to 0.2.

C. Exponentially distributed burst sizes

The exponential distribution has been considered in [3], [4].
Such distribution is characterized by the average burst size (15
Kbytes).

Finally, the wavelength speed is set to 10 Gbps, and, thus,
the average transmission time for a burst is equal to 12 µs. The
same average transmission time is considered in [3].



III. ANALYSIS

In addition to the parameters provided in the previous sec-
tion, let Rj be the residual time in service (residual life) of the
burst being transmitted in wavelength j, where j = 1, . . . , N ,
being N the number of wavelengths per port (servers). The
output port will be blocked if and only if j = N . Let Y be
the random variable that represents the blocking time for an
incoming burst. We wish to derive P (Y > y), y > 0, i.e. the
survival function of the blocking time. Since burst arrivals are
Poisson, and due to the PASTA property, the blocking time is
given by the minimum of the residual lives of the N bursts
in service, namely {Y > y} = minj=1,...,N{Rj > y}. Since
bursts sizes are independent and identically distributed

P (Y > y) =
N∏

j=1

P (Rj > y) = P (R1 > y)N (2)

Equation (2) provides an expression for the blocking time
distribution (survival function). Note that the blocking time
distribution depends on the burst size distribution. First, under
the weak assumption of finiteness in the burst size first moment,
we will show that the blocking time survival function becomes
exponential with the number of wavelengths (N ). Second, we
will provide closed analytical expressions for (2) assuming
Pareto, Gaussian and Exponential burst sizes.

A. Approximations for the blocking time distribution

The density of the residual life of a burst in service (P (R1 >
y)), as seen by Poisson arrivals, can be obtained from the
survival function of the service time as follows [13, pp. 172,
vol. I]

f̂R1(z) =
P (X1 > z)

EX1
(3)

Thus,

P (R1 > y) =
∫ ∞

y

f̂R1(z)dz =
∫ ∞

0

f̂R1(z)dz−

−
∫ y

0

f̂R1(z)dz = 1 − 1
EX1

∫ y

0

P (X1 > z)dz (4)

since R1 ≥ 0 a. s. From the previous equation and (2)

P (Y > y) =
(

1 − 1
EX1

∫ y

0

P (X1 > z)dz

)N

(5)

Since P (X1 > z) is a monotonically decreasing function,

(
1 − y

EX1

)N

<

(
1 − 1

EX1

∫ y

0

P (X1 > z)dz

)N

(6)

and

(
1 − 1

EX1

∫ y

0

P (X1 > z)dz

)N

<

(
1 − yP (X1 > y)

EX1

)N

(7)

For values of N and y such that N ∗ P (X1 > y) ∼ N
(note that this happens for values of y not in the tail of the
distribution and for moderate to large number of wavelengths
per port), (6) and (7) yield

P (Y > y) =
(

1 − 1
EX1

∫ y

0

P (X1 > z)
)N

≈ e−
Ny

EX1 (8)

In order to derive the last equation, it has been taken into
account that e−x = 1 − x + o(x). This approximation is more
accurate the smaller the value of y and the larger the value
of N . The numerical results in the next section will serve to
demonstrate the accuracy of this approximation.

B. Pareto-distributed burst sizes

An exact expression for the blocking time distribution can
be found using (2). Substitution of (1) in (4) yields

P (R1 > y) =
(α − 1)(K − y) + K

αK
0 ≤ y ≤ K

P (R1 > y) =
K(α−1)

α
y(1−α) y > K (9)

In order to derive the last equation, it must be noted that
EX1 = αK/(α − 1). Thus, using (2),

P (Y > y) =
(

(α − 1)(K − y) + K

αK

)N

0 ≤ y ≤ K

P (Y > y) =
(

K(α−1)

α
y(1−α)

)N

y > K (10)

C. Gaussian-distributed burst sizes

The same procedure can be adopted for the Gaussian case.
First, the survival function of the service time is equal to

P (X1 > z) = φ

(
z − EX1

σ

)
=

∫ +∞

z

1√
2πσ

e
−(x−EX1)2

2σ2 dx

(11)
where φ(x) is the survival function P (X > x) of the

standard Gaussian random variable1. Finally, using (4) and (2),

P (Y > y) = (12)

=
(

σ√
2πEX1

e
−(y−EX1)2

2σ2 +
EX1 − y

EX1
φ

(
y − EX1

σ

))N

The proof is given in the appendix.

1Truncation to the positive values is assumed



D. Exponentially-distributed burst sizes

The exponential case is straightforward due to the memo-
ryless property of the exponential distribution, which implies
that

P (R1 > y) = e−
y

EX1 (13)

and, thus, we use (2) to obtain

P (Y > y) = e−
Ny

EX1 (14)

which is equal to the approximation (8).

IV. RESULTS AND DISCUSSION

Numerical results from the above expressions are presented
in this section, together with simulation results. In order to
verify the accuracy of the approximation in section III-A both
small and large values of N (8 and 64) were selected. On
the other hand, a trace-driven analysis was also conducted.
Figure 2 shows the blocking time distribution (survival func-
tion) for N = 8 and Pareto, Gaussian and Exponential burst
size distributions. The traffic intensity is 4.5 Erlangs and the
blocking probability is equal to 0.0483. We observe that the
approximation in section III-A is accurate for the lower part
of the distribution, while the behavior of the distribution tail is
influenced by the burst size distribution. Nevertheless, it must
be noted that the expressions (10), (12) and (14) follow closely
the simulation results in all the range of blocking time values.
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Fig. 2. Blocking time distribution (Gaussian -top left-, Pareto -top right-,
Exponential -bottom-) (N = 8)

On the other hand, figure 3 shows the blocking time distribu-
tion (survival function) for N = 64. In order for the blocking
probability to remain the same (0.0483), the traffic intensity
is now increased to 58.6 Erlangs. In this case, we observe
that the exponential approximation is accurate on a larger part
of the distribution. Both numerical results and simulations for
values of N beyond 64 show that the larger the value of N the
better the approximation. Note that this is consistent with the
technological trend in DWDM networks, that will incorporate
a large number of wavelengths per fiber in the close future.
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Fig. 3. Blocking time distribution (Gaussian -top left-, Pareto -top right-,
Exponential -bottom-) (N = 64)

A. Trace-driven simulation

A trace-driven simulation was also conducted in order to
further assess that the analytical results presented in this paper
apply to a real Internet scenario. The number of wavelengths
per port (N ) is also made equal to 8 and 64, as in the previous
section. The trace was obtained from the NLANR Passive
Measurement and Analysis research project2 (Abilene-I data
set). A two hours trace from two bidirectional OC48 links was
used for the simulations. These links connect the Internet 2
Indianapolis node with the Cleveland node and the Kansas City
node. A timer-based burst assembly technique was adopted,
with a 300 µs. timer. Incoming packets to the edge shaper
are demultiplexed according to their destination in separate
queues. A timer is started with the first packet in the queue.
Upon timeout expiry, the burst is assembled and relayed to
the transmission queue. For this particular burstifier, we have
shown that the burst size distribution turns out to be (truncated)
Gaussian [7]. Being the burst size distribution Gaussian, we
expect that the blocking time distribution is well modeled by
(12). On the other hand, the approximation (8) is also expected
to apply, specially as the number of wavelengths increases.
Figure 4 shows the blocking time distribution for N = {8, 64}.
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Fig. 4. Blocking time distribution (Trace-driven simulation N = 8 (left),
N = 64(right))

The results show very good agreement between the exact

2http://pma.nlanr.net



analytical distribution (12) and the empirical blocking time
distribution. On the other hand, the accuracy of the approxi-
mation (8) increases with the number of wavelengths, and it is
a good approximation for N = 64. In conclusion, simulations
with both real traffic and synthetic traffic clearly show that our
analysis can be applied to a wide range of OBS scenarios.

V. CONCLUSIONS

Optical Burst Switching is a promising transport technique
for the optical backbone. However, burst assembly functionality
is required at the network edges and a number of algorithms
can be used for this purpose, that will surely give raise to
different burst size distributions. In this paper we address the
fundamental issue of how the OBS routers are affected by the
burst assembly algorithm. The state of the art [3]–[6] shows
that the burst blocking probability does not depend on the burst
size distribution, namely, blocking probability does not depend
on the burst assembly algorithm. Under the weak assumption
of finiteness in the burst size first moment, we show that the
blocking time distribution becomes independent from the burst
assembly algorithm as the number of wavelengths per fiber
increases. Thus, an exponential approximation for the blocking
time distribution is presented, for the case of moderate to large
number of wavelengths (64). Additionally, exact expressions for
the blocking time distribution are provided, for any number of
wavelengths, considering three common burst size distributions
(Pareto, Gaussian, Exponential). These results apply directly to
FDL dimensioning and end-to-end delay estimation.
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APPENDIX

PROOF OF (12)

Since X1 is Gaussian with mean EX1 and variance σ2 then,

P (X1 > z) = φ

(
z − EX1

σ

)
=

∫ +∞

z

1√
2πσ

e
−(x−EX1)2

2σ2 dx

(15)
and, using (4),

P (R1 > y) =
1

EX1

∫ +∞

y

∫ +∞

z

1√
2πσ

e
−(x−EX1)2

2σ2 dxdz

(16)
By Fubini’s Theorem,

P (R1 > y) =
1

EX1

∫ +∞

y

∫ x

y

1√
2πσ

e
−(x−EX1)2

2σ2 dzdx (17)

and, thus,

P (R1 > y) =
1

EX1

∫ +∞

y

x
1√
2πσ

e
−(x−EX1)2

2σ2 dx

− 1
EX1

∫ +∞

y

y
1√
2πσ

e
−(x−EX1)2

2σ2 dx (18)

Now, solve the previous integral to obtain

P (R1 > y) =
σ√

2πEX1

e
−(y−EX1)2

2σ2 +

+
EX1 − y

EX1
φ

(
y − EX1

σ

)
(19)

which, together with (2) yields (12).
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