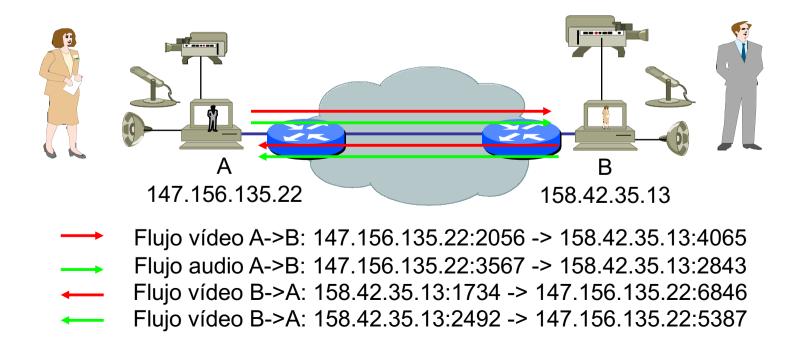


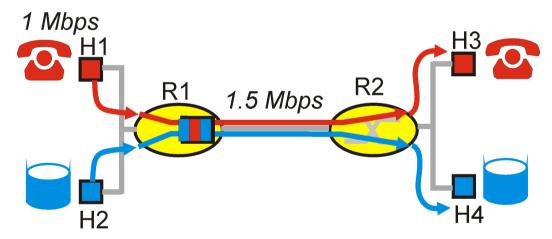
Clasificación y Scheduling

Area de Ingeniería Telemática http://www.tlm.unavarra.es


Grado en Ingeniería en Tecnologías de Telecomunicación, 3º

Clasificación y marcado

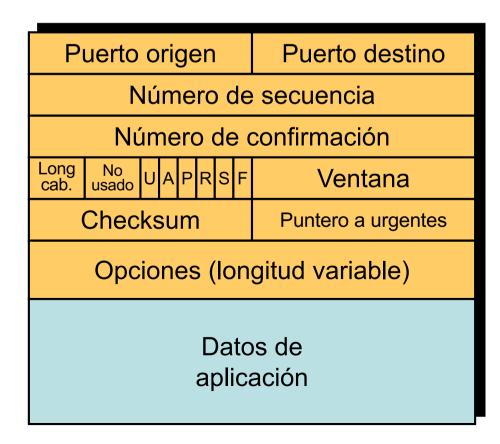
Concepto de flujo en QoS


- Secuencia de datagramas que se produce como resultado de una acción del usuario y requiere la misma QoS
- Normalmente es simplex (unidireccional)
- Es la entidad más pequeña a la que los routers pueden aplicar una determinada QoS
- Ejemplo: una videoconferencia estaría formada por cuatro flujos, dos en cada sentido, uno para el audio y otro para el vídeo.
- Los flujos pueden agruparse en clases; todos los flujos dentro de una misma clase reciben la misma QoS.

Elementos

Clasificación / Marcado

- ¿Cómo distinguir entre flujos?
- Ejemplo: Teléfono IP a 1Mbps, comparte enlace de 1.5Mbps con
 FTP
 - Ráfagas de FTP pueden congestionar el enlace y causar fallos en el audio
 - Queremos dar prioridad al audio sobre el FTP

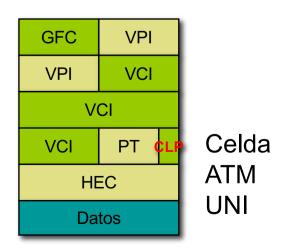


Los routers necesitan distinguir el tráfico de diferentes clases y aplicarles diferentes políticas: *packet marking* (generalmente a la entrada a la red)

- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- (...)

Versión	Header Length	TOS	Longitud			
16-bit identifier				DΕ	M F	13-bit fragmentation offset
TTL Protocolo			Header checksum			
Dirección IP origen						
Dirección IP destino						
[opciones]						
[Datos]						

- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- Puede incluir parámetros de nivel de transporte (puertos)
- Fragmentos IP pierden cabecera nivel 4 y se vuelven best effort
- (...)


- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- Puede incluir parámetros de nivel de transporte (puertos)
- Fragmentos IP pierden cabecera nivel 4 y se vuelven best effort
- O información de nivel físico (interfaz de entrada)
- O de nivel de enlace

Ethernet: VLAN, direcciones MAC, Ethertype, bits de prioridad

- (...) **PCP** Tráfico recomendado (802.1Q-2005 Tabla G-2) **Best Effort** Background **Excellent Effort** 2 0x8100 VID 3 **Critial Applications** 16 bits 12 bits عtid 3 "Vídeo" < 100ms latencia y jitter 5 "Voz" < 10ms latencia y jitter Internetwork Control Dest Src Addr Addr **Network Control**

Trama Ethernet 802.1Q

- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- Puede incluir parámetros de nivel de transporte (puertos)
- Fragmentos IP pierden cabecera nivel 4 y se vuelven best effort
- O información de nivel físico (interfaz de entrada)
- O de nivel de enlace
 - Ethernet: VLAN, direcciones MAC, Ethertype, bits de prioridad
 - ATM: VPI/VCI, bit CLP
 - **–** (...)

- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- Puede incluir parámetros de nivel de transporte (puertos)
- Fragmentos IP pierden cabecera nivel 4 y se vuelven best effort
- O información de nivel físico (interfaz de entrada)
- O de nivel de enlace
 - Ethernet: VLAN, direcciones MAC, Ethertype, bits de prioridad
 - ATM: VPI/VCI, bit CLP
 - MPLS: Label, Exp (TC) bits
- (...)

Link Layer header	Label Stack Entry	Datagrama IP
_		

Label	Exp S	TTL	
20	3 1	8	bits

- En IPv4 (layer 3) la clasificación se suele hacer por:
 - Dirección IP de origen, dirección IP de destino
 - Protocolo de transporte utilizado (TCP o UDP)
- Puede incluir parámetros de nivel de transporte (puertos)
- Fragmentos IP pierden cabecera nivel 4 y se vuelven best effort
- O información de nivel físico (interfaz de entrada)
- O de nivel de enlace
 - Ethernet: VLAN, direcciones MAC, Ethertype, bits de prioridad
 - ATM: VPI/VCI, bit CLP
 - MPLS: Label, Exp (TC) bits
- O de nivel de aplicación (URL, MIME type, etc) usando DPI (Deep Packet Inspection) y SI (Stateful Inspection)

GET /~daniel/index.html HTTP/1.1

Host: www.tlm.unavarra.es

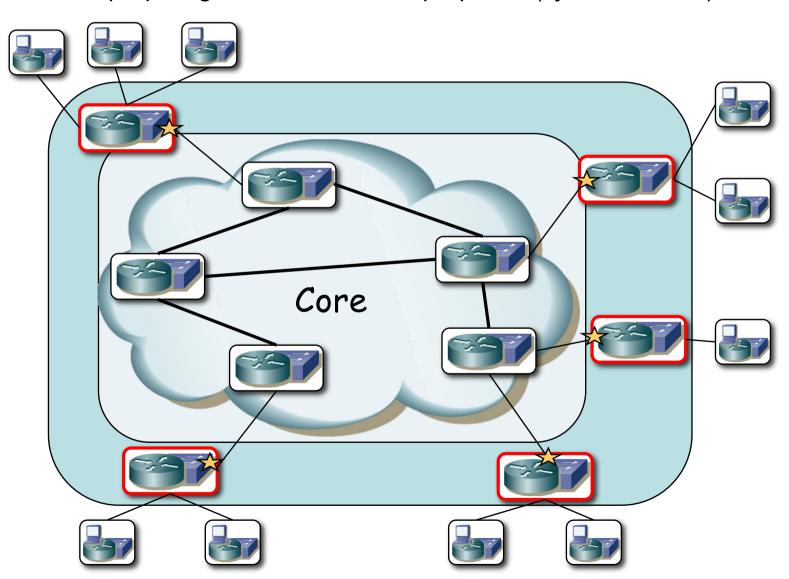
User-agent: Mozilla/4.0

Connection: close Accept-language:es

Marcado / Coloreado

- Marcar al paquete como perteneciente a un flujo o a una clase
- En base a la clasificación
- Simplifica la clasificación a partir de ese punto
- En IPv4 usar los bits de TOS (renombrados para DiffServ)
- (...)

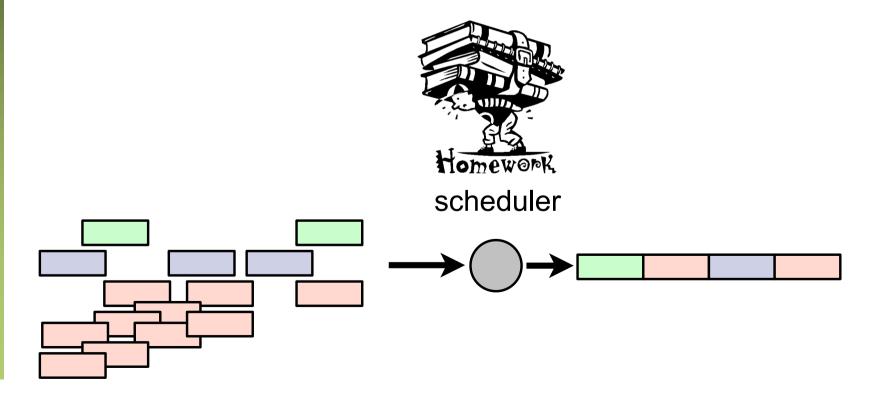
Versión	Header Length	TOS	Longitud			
16-bit identifier				DΕ	M F	13-bit fragmentation offset
TTL		Protocolo	Header checksum			
Dirección IP origen						
Dirección IP destino						
[opciones]						
[Datos]						


Marcado / Coloreado

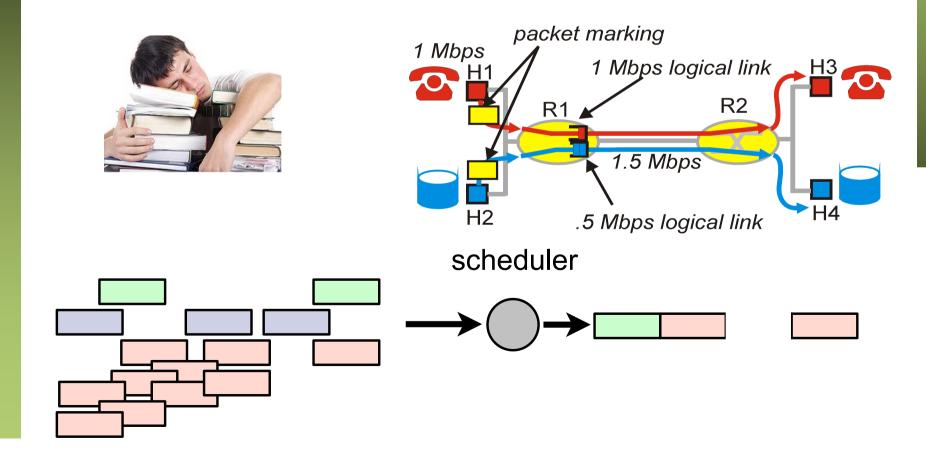
- Marcar al paquete como perteneciente a un flujo o a una clase
- En base a la clasificación
- Simplifica la clasificación a partir de ese punto
- En IPv4 usar los bits de TOS (renombrados para DiffServ)
- En trama 802.1Q en los bits de prioridad
- En celda ATM en bit CLP

¿ Dónde = Quién ?

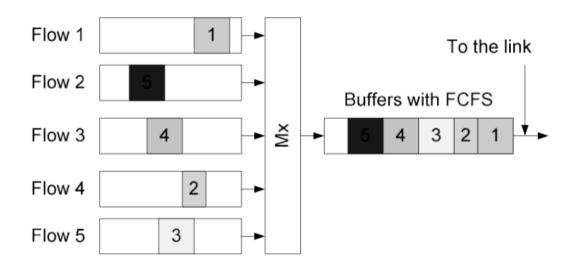
- Preferiblemente en los extremos (edge) de la red
- O en los propios generadores de los paquetes (ej. Teléfono IP)



Scheduling: FCFS


Scheduling

- Permite compartir recursos
- Emplea una disciplina de planificación para decidir la siguiente petición a atender
- Puede tener lugar en diferentes niveles de una pila de protocolos
- Por ejemplo en el nivel de aplicación sería necesario para decidir la siguiente petición a un servidor que atender
- (...)


Scheduling

- Nos centraremos en compartir la capacidad de un enlace
- Y en planificadores conservativos en trabajo (work conserving): están inactivos solo si la cola está vacía

FCFS (FIFO)

- Orden de llegada
- Es el método más rápido y sencillo de implementar
- Se suele utilizar por defecto (Best Effort)
- ¿Problemas? (...)

FCFS (FIFO)

Problemas

 Limitado por la capacidad del buffer ante congestión (normalmente en número de paquetes)

- No permite diferenciar entre distintos tipos de paquete
- Se logra asignación proporcional a la demanda
- Una fuente greedy puede capturar el enlace

The conservation law

- La disciplina FCFS no distingue entre diferentes flujos
- FCFS por ejemplo no permite menor retardo a paquetes de un flujo

Conservation Law

- Nos dice que una disciplina de planificación solo puede mejorar el retardo medio de un flujo frente a FCFS a costa de empeorar el de otro flujo
- (...)

Ejemplo

- Sea un conjunto de N flujos en un planificador
- Para el flujo *i* la tasa media de llegadas por unidad de tiempo es λ_i
- El tiempo medio de servicio de los paquetes del flujo i es x_i
- La utilización media del enlace debido al flujo i es ρ_i = λ_ix_i
- El tiempo medio de espera en cola de los paquetes del flujo i es qi
- Si el planificador es conservativo en trabajo (work-conserving) entonces

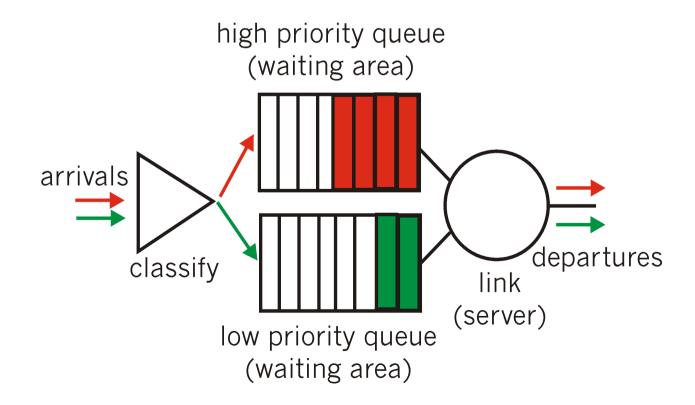
$$\sum_{i=1}^{N} \rho_i q_i = \text{Constante}$$

• Es independiente del planificador en concreto

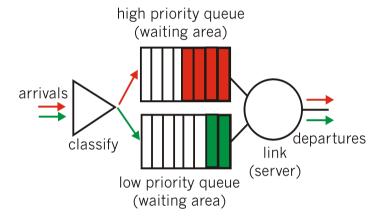
- Un STM-1
- Dos PVCs ATM
 - A. Tasa de llegadas de 10Mbps
 - B. Tasa de llegadas de 25Mbps
- Con FCFS ambos sufren un retardo medio en cola de 0.5 ms
- Con un planificador diferente los paquetes del flujo A sufren un retardo medio en cola de 0.1 ms
- ¿Cuál es el retardo medio en cola que sufren los paquetes del flujo B?
- (...)

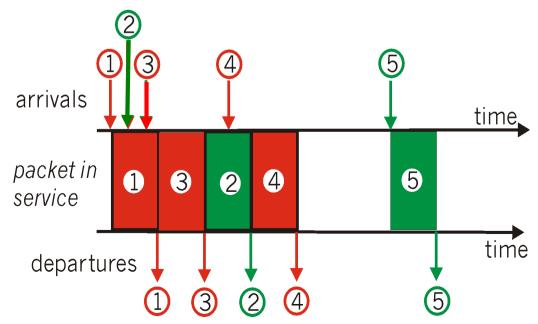
$$\sum \rho_i q_i = \text{Constante}$$

• Es decir: para reducir el retardo medio de una clase debemos aumentar el de otra(s)


$$\sum_{i=1}^{N} \rho_i q_i = \text{Constante}$$

Priority Queueing


Priority Queueing (PQ)


- Paquetes en cola de mayor prioridad se envían siempre antes que paquetes en colas de menor prioridad
- En cada cola FCFS

Priority Queueing (PQ)

- Paquetes en cola de mayor prioridad se envían siempre antes que paquetes en colas de menor prioridad
- En cada cola FCFS

Priority Queueing (PQ)

- Asegura que el tráfico importante reciba un servicio rápido
- Puede crear inanición (starvation), es decir, dejar fuera de servicio a tráfico menos prioritario
- Menor retardo en cola medio para un flujo a costa de mayor para otros
- Multilevel priority with exhaustive service: Los paquetes en una cola de menor prioridad no se envían hasta que todas las colas de mayor prioridad están vacías

Priority Queueing

- El número de niveles de prioridad depende del número de clases de retardo a crear
- Son típicas al menos 3:
 - Prioridad alta: mensajes urgentes, por ejemplo protocolos de control de red
 - Prioridad media: servicio garantizado
 - Prioridad baja: best-effort
- Otra posibilidad:
 - Prioridad alta: voz
 - Prioridad media: vídeo
 - Prioridad baja: resto de datos
- Es vital un correcto control de admisión y policing para todo lo que no sea la clase más baja
- El reparto del BW entre las clases no es max-min fair
- Sencillo de implementar

