

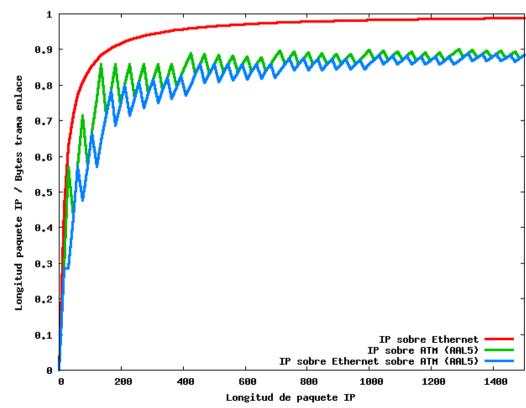
QoS: Transporte de Voz

Area de Ingeniería Telemática http://www.tlm.unavarra.es

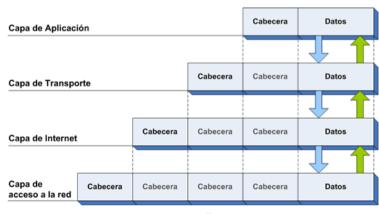
Grado en Ingeniería en Tecnologías de Telecomunicación, 3º

Voz y el throughput

Throughput


- Generalmente los codecs producen un flujo a bitrate constante
- Esto puede no ser así si se emplea supresión de silencios (VAD, *Voice Activation Detection*)
 - Una conversación suele contener aproximadamente un 50% de silencios
 - VAD reduce el ancho de banda medio pero no el de pico
- La capacidad suele estar dimensionada para soportar la tasa de pico
- Esto no quita para que se haga sobresubscripción

Throughput y encapsulado


- A la hora de asegurar un throughput hay que tener en cuenta que:
 - El servicio genera un bitrate a nivel de aplicación
 - Habrá al menos encapsulado IP (más transporte UDP?)
 - El encapsulado de nivel de enlace va a depender de cómo se haga el transporte de red

Throughput y encapsulado

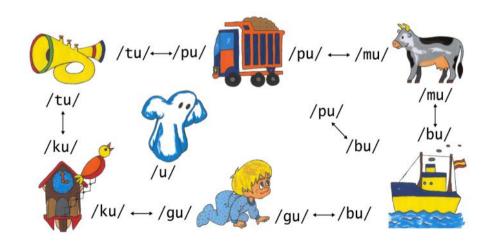
- Hay que tener en cuenta en qué nivel se está asegurando el throughput
- Esto afecta a cualquier servicio
- Si se asegura un bitrate o pkts/s a nivel IP hay que tener en cuenta que al enviar se añade la cabecera de nivel de enlace
- Ejemplo:
 - Flujo A paquetes de 100 bytes, flujo B paquetes de 1000 bytes (a nivel IP)
 - Se asegura un reparto del 50:50 % de la capacidad del enlace a nivel IP
 - Enlace Ethernet
 - En un cierto periodo se enviarán 10 paquetes de A por cada paquete de B
 - Se han enviado 10x(100+18) bytes de A y 1000+18 bytes de B
 - Eso son 1180 bytes de A y 1018 de B
 - Eso es un 54:46 %

Encapsulado: Ejemplo

- Cada paquete suele llevar unos 20-30ms de muestras
- En el cálculo del BW hay que tener en cuenta la encapsulación
 - X bytes de payload (muestras de voz)
 - +12 de cabecera RTP
 - + 8 de cabecera UDP
 - +20 de cabecera IP (mínima sin opciones)
 - + Y bytes de cabecera de enlace
- Ejemplo: G.711 (64 Kbps, Con paquetes cada 20ms, 50 pps)
 - 8 muestras/ms, 1 byte/muestra, 20 ms/paquete ⇒ 160 bytes/paquete
 - 160+12+8+20 = 200 bytes de paquete IP ⇒ 10.000 Bps (80 Kbps)
 - Enlace PPP (+6 Bytes) ⇒ 206 bytes/trama ⇒ 82.4 Kbps
 - o enlace Ethernet (+18 Bytes) ⇒ 218 bytes/trama ⇒ 87.2 Kbps
 - o enlace Frame Relay (+4 Bytes) ⇒ 204 bytes/trama ⇒ 81.6 Kbps
 - o ATM/AAL5-LLC/SNAP ⇒ 5 celdas = 265 bytes/paquete ⇒ 106 Kbps
- Ejemplo: G.729a (8 Kbps, con paquetes cada 20ms, 50 pps)
 - PPP = 26.4 Kbps, Ethernet = 29.6 Kbps, FR = 25.6 Kbps, ATM = 42.2 Kbps

Voz y pérdidas

Pérdidas


- Packet Loss Concealment (PLC)
- Permite enmascarar el efecto de pérdida de paquetes de VoIP
- En codecs tipo G.711 se repite la última muestra
 - Se basa en que la onda cambia despacio
 - Se puede cubrir así hasta en torno a 20ms de muestras
 - La paquetización en el codec determina cuántas muestras hay en un paquete
 - Si se crean los paquetes conteniendo 20ms de muestras entonces dos o más pérdidas consecutivas degradan la calidad
 - Paquetes más grandes reducen la sobrecarga de cabeceras y por lo tanto el ancho de banda consumido
 - Sin embargo, si los paquetes contienen más de 20ms de muestras, puede que con PLC no se puedan mitigas las pérdidas

Pérdidas

- Codecs frame-based (G.729 y G.723) usan técnicas más sofisticadas, cubriendo pérdidas de hasta 30-40ms si no son fonemas cortos
- Se puede recuperar una pérdida pero mejor diseñar la red para pérdidas cercanas a 0 para el tráfico de voz

Codecs

ITU-T Codec	Codec type	Maximum codec delay (ms) (a1 d)	Bitrate (bps)	Packetization interval (ms) (b)	pps	Payload size (bytes)	IP pkt size (bytes) ⁱ	IP bps
G.711	PCM	0.375	64 000	10	100	80	120	96 000
G.711	PCM	0.375	64 000	20	50	160	200	80 000
G.711	PCM	0.375	64 000	30	33.33	240	280	74 659
G.723.1	ACELP	97.5	5 300	30	33.33	20	60	15 998
G.723.1	ACELP	97.5	5 300	15	16.67	40	80	10 669
G.726.16	ADPCM	0.375	16 000	10	100	20	60	48 000
G.726.16	ADPCM	0.375	16 000	20	50	40	80	32 000
G.726.16	ADPCM	0.375	16 000	30	33.33	60	100	26 664
G.726.24	ADPCM	0.375	24 000	10	100	30	70	56 000
G.726.24	ADPCM	0.375	24 000	10	50	60	100	40 000
G.726.24	ADPCM	0.375	24 000	10	33.33	90	130	34 663
G.726.32	ADPCM	0.375	32 000	10	100	40	80	64 000
G.726.32	ADPCM	0.375	32 000	20	50	80	120	48 000
G.726.32	ADPCM	0.375	32 000	30	33.33	120	160	42 662
G.726.40	ADPCM	0.375	40 000	10	100	50	90	72 000
G.726.40	ADPCM	0.375	40 000	20	50	100	140	56 000
G.726.40	ADPCM	0.375	40 000	30	33.33	150	190	50 662
G.728	LD-CELP	1.875	16 000	10	100	20	60	48 000
G.728	LD-CELP	1.875	16 000	20	50	40	80	32 000
G.728	LD-CELP	1.875	16 000	30	33.33	60	100	26 664
G.729A	CS-ACELP	35	8 000	10	100	10	50	40 000
G.729A	CS-ACELP	35	8 000	20	50	20	60	24 000
G.729A	CS-ACELP	35	8 000	30	33.33	30	70	18 665

Retardos y voz: Ejemplo

Tecnologías Avanzadas de Red Área de Ingeniería Telemática

Ejemplo de retardo VoIP

- Llamada transatlántica
- Estimación de caso peor
- Haciendo prioritario el tráfico de voz
- Solo 1 llamada de voz es tráfico prioritario

Ejemplo: max. end-to-end delay

1 sola llamada de voz, tráfico prioritario	mseg	Quedan
Delay Budget	150	
Retardo de codificación	10	140
Paquetes por ejemplo de 206 Bytes (G.711 sobre Ethernet, 87,2 Kbps)		
Enlaces de acceso upstream de 512 Kbps, tiempo de transmisión aprox.	3,2	136,8
Caso peor encuentra un paquete de tam. MTU empezando a transmitirse	23,7	113,1
En el camino enlaces a 100 Mbps		
Por ej. otros 9 routers en europa + internacional (ignorando sw. capa2)	1,4	111,7
$10 x (Ttx + Ttx_max_pkt) = 10 x (0,016 + 0,121)$		
Propagación intra-europea aprox. (según trayecto, ej. 3.000Km)	15	96,7
Propagación transatlántica aprox. (según cable)	45	51,7
Por ejemplo 9 conmutadores en USA + internacional	1,4	50,3
10 x (Ttx + Ttx_max_pkt) = 10 x (0,016 + 0,121)		
Propagación en EE.UU., por ejemplo 2.000Km	10	40,3
Enlace acceso a 6 Mbps, downstream, transmisión + pkt máximo aprox.	2,3	38
Ttx + Ttx_max_pkt = 0,3 + 2		
Remanente		38

Ejemplo: retardo

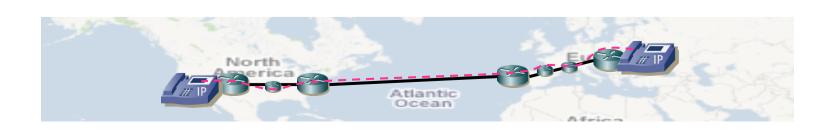
- Solo hemos considerado store-and-forward en los routers IP
- Pero seguramente habrá en capa 2 si el transporte son tecnologías de conmutación de paquetes

Ejemplo: retardo

- Total: 112ms, pero es caso peor
- Mínimo: 80ms (sin otro tráfico)
- La diferencia entre máximo y mínimo: unos 30ms
- La componente variable viene del retardo en cola
- Con una sola llamada y prioridad alta es el retardo de encontrar un paquete delante (en cada salto)

Ejemplo: Jitter?

- El retardo variable viene del tamaño de esos paquetes delante
- Se podría calcular un retardo medio con tamaños medios de paquete
- El retardo en cola es lo que contaríamos en el de-jitter buffer
- Con retardo mínimo de 80ms quedan 70ms para este buffer
- Los retardos fijos pueden dejar poco margen de maniobra al jitter y por lo tanto exigir SLAs estrictos



Retardos y voz: Ejemplos con varias llamadas

Ejemplo: 2 llamadas en acceso

- 2 x 87,2 Kbps = 174,4 Kbps < 512 Kbps
- Caso peor:
 - Llega y hay un paquete de datos enviándose
 - Y mientras espera llega uno de voz de la otra llamada
 - Ese último paquete espera al de datos y al de voz
- Incrementa en el tiempo de transmisión del paquete de voz
- Paquete pequeño así que retardo pequeño
- Salvo que la velocidad sea baja (el acceso a 512Kbps)

Ejemplo: N llamadas

- N llamadas pero solo en los troncales (no en el acceso)
- No siguen el mismo camino
- En cada salto troncal hay que tener en cuenta en el caso peor el retardo de N paquetes de alta prioridad + 1 de baja
- Ejemplo:
 - 100Mbps, digamos 20Mbps para voz, a 87,2Kbps/llamada son unas 230 llamadas
 - En un salto a 100Mbps en caso peor 230x0,016+0,121 = 3,801ms
 - Sigue siendo la peor componente el paquete grande en el acceso de baja velocidad (23ms a 512Kbps)
 - La siguiente serían las llamadas de voz en los enlace de baja capacidad

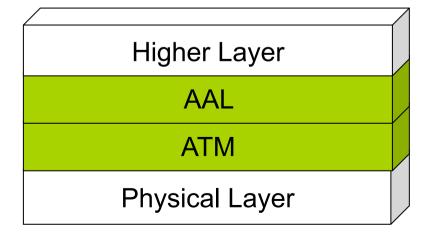
Máximo retardo de propagación

- Hemos estimado 60ms de propagación
 - Circunferencia (aprox) de la Tierra: 40.000Km => máx. distancia: 20.000Km
 - 20.000Km a 200.000Km/s = 100ms
 - Caso peor de distancia pero caso mejor de línea recta
 - Deja poco margen
 - Adaptar las expectativas
- Si se cambia de codec en el camino se incrementa el retardo en transcodificar
- ¿ Y si queremos encriptación (VPN) ? Añade más retardo de codificación/decodificación y en cabeceras

Transporte de voz

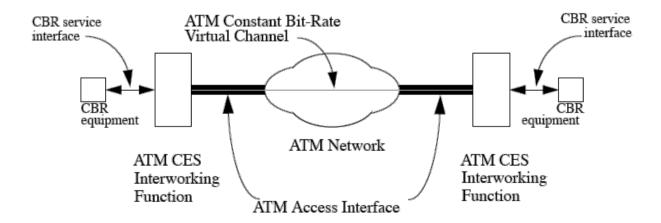
Transporte de voz

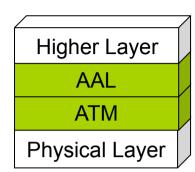
- Sobre red de conmutación de paquetes
- Múltiples formas según la tecnología de red
- Y cada una puede ofrecer diferentes mecanismos
- Brevemente comentaremos:
 - VoATM: CES con AAL1 estructurado o no, trunking con AAL2
 - VoIP y DiffServ
 - Voz y MPLS: TDMoMPLS, VoMPLS con AAL2
 - Voz y Carrier Ethernet: CESoETH


Tecnologías Avanzadas de Red Área de Ingeniería Telemática

VoATM

Voice over ATM (VoATM)


- No ha logrado llegar hasta el escritorio
- Modelos de transporte de voz
 - Voice trunking: tunneling del tráfico de voz. Adecuado para interconectar PBXs
 - Voice switching: la red ATM interpreta la señalización y encamina la llamada



ATM: Circuit Emulation Services

- CES
- ITU-T I.363.1
- Emplea AAL1 para transportar un flujo CBR
- En el PVC es importante la CDV además del PCR
- *Unstructured AAL1*: transporte de DS1/E1, DS3/E3
- Structured AAL1
 - Transporte de DS1/E1, permite no enviar los DS0 no utilizados (entrada structured E1/T1 Nx64)
 - Puede repartir los DS0 entre varios destinos
- Simple

DB-CES

- Dynamic Bandwidth CES
- Reconoce la señalización (ej: on-hook, off-hook) CCS o CAS (entonces debe ser structured)
- Envía celdas solo cuando hay llamada establecida en un DS0

ATM: Trunking con AAL2

- ITU-T I.363.2
- Transporte de voz comprimida con detección/supresión de silencios y eliminación de canales inactivos
- Múltiples canales de voz en un circuito
- VCCs VBR
- Modo Non-switched trunking
 - Cada canal de voz siempre en el mismo canal AAL2 en el mismo VCC
 - No procesa señalización
- Modo Switched trunking
 - Procesa señalización
 - El extremo selecciona el VCC y canal AAL2 en que colocar el canal de voz

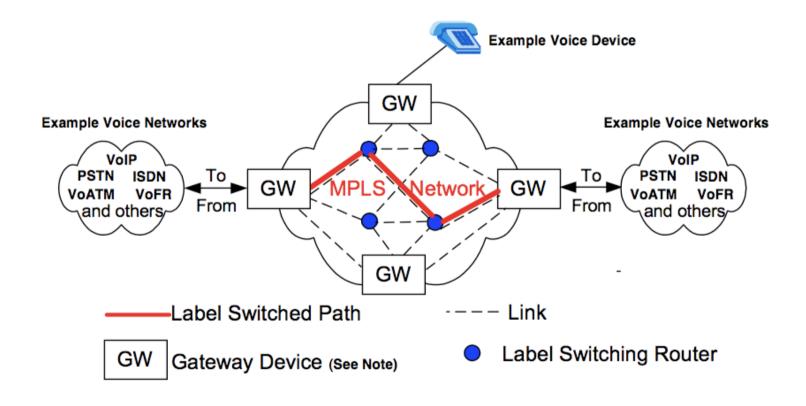
VoIP y DiffServ

VoIP y DiffServ

- Clasificación en función de interfaz, puertos TCP/ UDP, IP Precedence, DSCP, direcciones IP, etc
- Expedited Forwarding (EF)
- Marcado de EF DSCP 101110
- Planificador con prioridad (PQ, LLQ)
- Para la señalización:
 - DSCP CS5 (RFC 4594) o CS3 (Cisco)
 - En torno a 150 bps garantizados por llamada
 - No usar mecanismos de AQM
- (...)

VoIP y DiffServ

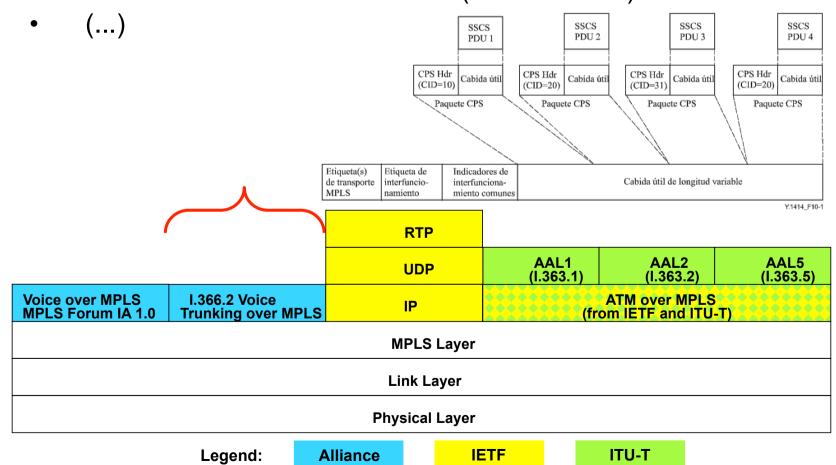
- Limitar la cantidad de voz con CAC (si es caso limitar local al nodo con policer)
- Local CAC
 - El propio gateway determina si tiene suficientes recursos
 - Si tiene suficiente memoria o DSP para soportar la llamada
- Network CAC
 - Validar que la red tiene suficientes recursos
 - Retardo, pérdidas y jitter
 - Si no hay camino con calidad entonces usar la PSTN (PSTN fallback)
- RSVP



Tecnologías Avanzadas de Red Área de Ingeniería Telemática

VoMPLS

VoMPLS

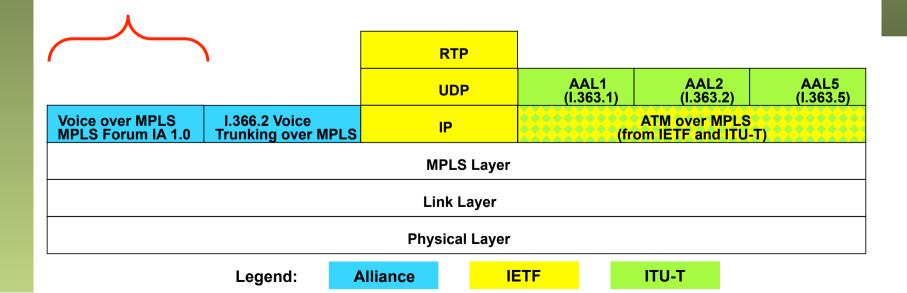


VoMPLS

ITU-T Y.1414 "Interfuncionamiento de los servicios vocales y las redes con conmutación por etiquetas multiprotocolo"

Encapsulación de audio codificado en paquetes MPLS:

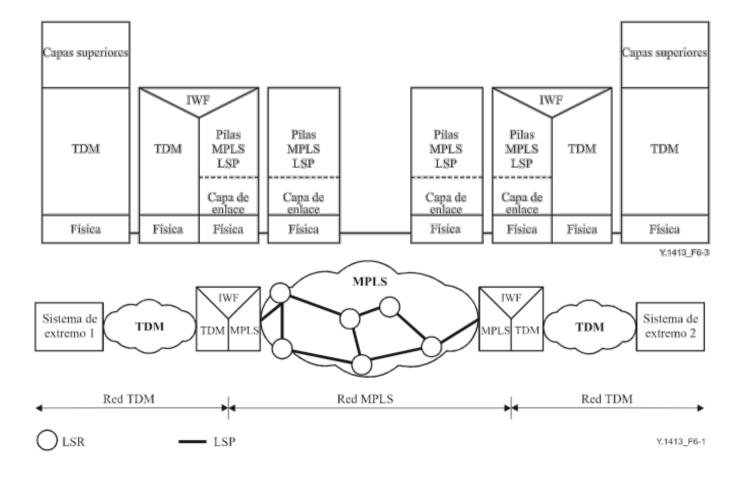
Voz sobre MPLS usando AAL2 (ITU-T I.366.2)



VoMPLS

ITU-T Y.1414 "Interfuncionamiento de los servicios vocales y las redes con conmutación por etiquetas multiprotocolo"

Encapsulación de audio codificado en paquetes MPLS:

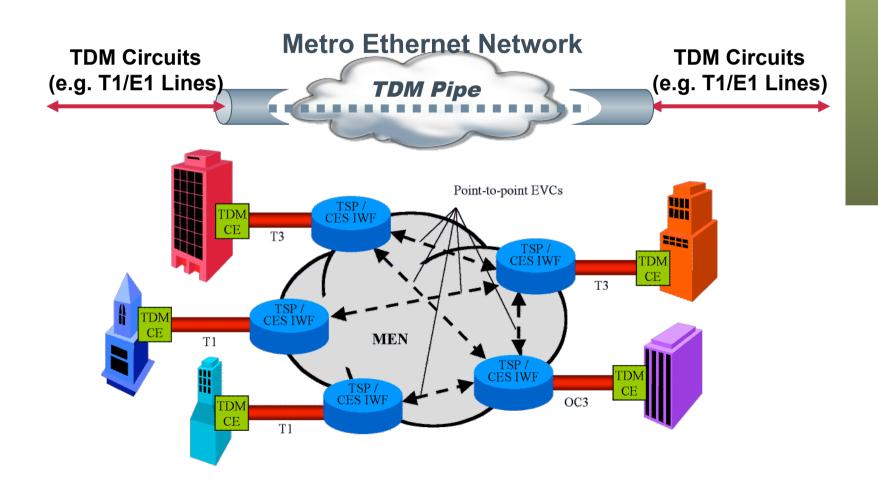

- MPLS Forum: "Voice over MPLS Bearer Transport Implementation Agreement 1.0"
 - Comprimida o sin comprimir
 - Supresión de silencios
 - Transporte de señalización

TDMoMPLS

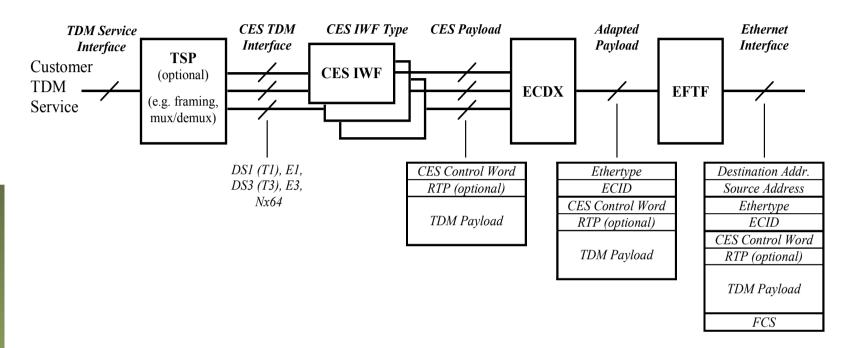
- ITU-T Y.1413 "TDM-MPLS network interworking -- User plane interworking"
- TDM hasta T3/E3
- Temporización de señal externa o recuperada por métodos adaptativos
- Varias conexiones TDM pueden ir en el mismo LSP
- BW en el LSP (bidireccional) debe ser suficiente para todas

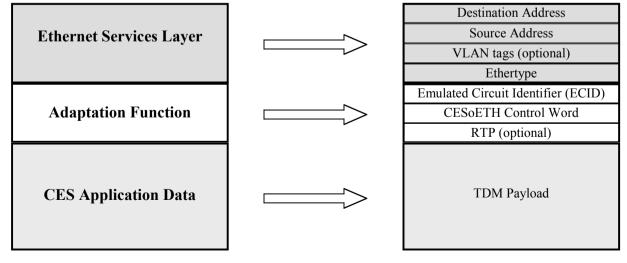
TDMoMPLS

- Si emplea DiffServ entonces usará el PHB EF
- Si emplea IntServ entonces se usará el Guaranteed Service con reserva de BW adecuada
- Transporte agnóstico con respecto a la estructura
 - Ignora la estructura TDM
 - El número de bytes por paquete es configurable
- Transporte atento a la estructura
 - Puede usar AAI 1


Tecnologías Avanzadas de Red Área de Ingeniería Telemática

VoEth


CESoETH


- Circuit Emulation Service (CES). TDM Line (T-Line) Service
- Transporte de circuitos TDM por la MEN
- Tanto PDH (Nx64, T1/E1, T3/E3) como SONET/SDH (STS-1, STM-1, STS-3, STM-3, STM-4, etc.)

CESoETH

