

OpenFlow

OpenFlow

- Su origen en proyectos de investigación en la Universidad de Stanford
- En 2011 se funda el consorcio ONF
 - Open Networking Foundation
 - https://www.opennetworking.org
 - Más de 140 empresas (fabricantes, operadoras, ISPs, startups, etc)
- OpenFlow es un protocolo "southbound"
- No hace "nada" sin una aplicación que lo emplee

C Guard Core

intelliment

tential

0

NAIM

NEWTEST

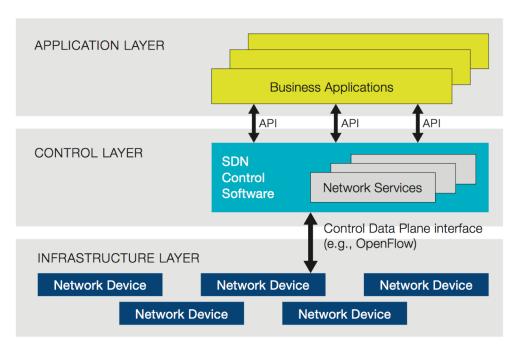
MNoviFlow

Openwave Mobility

saisei

Sanctum

SDN Essentials


sify'

ONF y SDN

- "The aim of SDN is to provide open interfaces that enable the development of software that can control the connectivity provided by a set of network resources and the flow of network traffic though them, along with possible inspection and modification of traffic that may be performed in the network."
- "In the SDN architecture, the control and data planes are decoupled, network intelligence and state are logically centralized, and the underlying network infrastructure is abstracted from the applications."

OpenFlow

- Dos tipos de conmutadores:
 - OpenFlow-only: solo soportan el modo de funcionamiento OpenFlow
 - OpenFlow-hybrid: también soportan funcionamiento "normal" (conmutación L2, conmutación L3, VLANs, ACLs, etc)
 - Los híbridos deberán tener alguna forma de clasificar si los paquetes pasan por procesado "normal" u OpenFlow

Ejemplo: HP 2920-24G

Redes de Nueva Generación Área de Ingeniería Telemática

Key Features

- High-performance Gigabit Ethernet access switch
- Four optional 10GbE (SFP+ and/or 10GBASE-T) ports
- Stacking capability with a total of four switches
- L2 and L3 plus static and RIP routing, PoE, and PoE+ support
- Limited Lifetime Warranty 2.0, sFlow, ACLs, OpenFlow, and rate limiting

Product overview

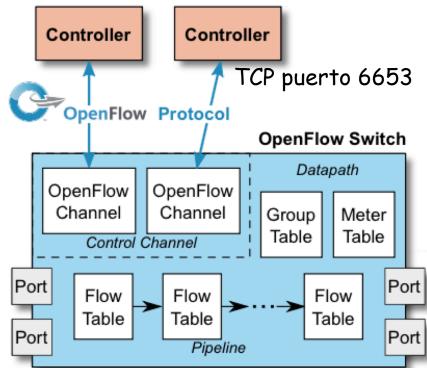
The HP 2920 Switch Series consists of five switches: the 2920-24G and 2920-24G-PoE+ switches with 24 10/100/1000 ports and the 2920-48G, 2920-48G-PoE+, and 2920-48G 740W PoE+ switches with 48 10/100/1000 ports. Each switch has four dual-personality ports for 10/100/1000 or SFP connectivity.

In addition, the 2920 Switch Series supports up to four optional 10 Gigabit Ethernet (SFP+ and/ or 10GBASE-T) ports, as well as a two-port stacking module. These options provide you with flexible and easy-to-deploy uplinks and stacking.

Together with static and routing-information-protocol (RIP) routing, robust security and management, enterprise-class features, Limited Lifetime Warranty 2.0, and software updates included, the 2920 Switch Series is a comprehensive, cost-effective, and scalable solution for building high-performance networks. These switches can be deployed at the enterprise edge, in remote branch offices, and in converged networks.

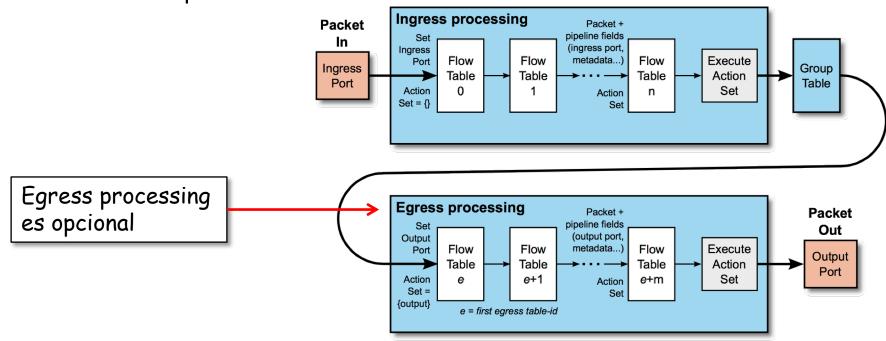
Features and Benefits

Software-defined networking


OpenFlow

supports OpenFlow 1.0 and 1.3 specifications to enable SDN by allowing separation of the data (packet forwarding) and control (routing decision) paths

Flow Tables


- Contienen la información sobre los campos a comprobar (match fields) en los paquetes y qué hacer con ellos
- El controlador puede añadir, modificar y borrar entradas empleando OF
- Las "acciones" son las operaciones en caso de que el paquete verifique la entrada en la tabla
- Puede reenviar el paquete, mandárselo al controlador, pasarlo a otra tabla, actualizar contadores, etc

OpenFlow pipeline

- Debe tener al menos una tabla aunque pueden ser más (desde 1.1, permite procesado de etiquetas MPLS)
- Hay procesado a la entrada del paquete (al menos una tabla)
- Si se decide reenviarlo pasa por tablas de salida (desde 1.5)
- Las tablas se comprueban en orden
- Si el paquete verifica una regla se ejecuta la acción que indique
- Si no verifica ninguna es un "table miss" y hay una acción por defecto en la tabla para este caso

Acciones

- Incluimos aquí la acción por defecto para el caso de "table miss"
- La acción puede ser pasar a otra tabla posterior (no anterior)
- Puede ser hacer inundación
- O reenviar por un puerto en concreto
- O puede ser reenviar el paquete al controlador (dentro de un mensaje OF)
- O pasar el paquete a un reenvío tradicional si es un conmutador híbrido
- O modificar campos de cabeceras del paquete (una modificación afecta a las comprobaciones en egress tables)
- etc

- Match Fields:
 - Puede valer ANY (comodín) o soportarse bitmasks
 - Hasta la versión 1.1 se miraban ciertos campos:
 - Puerto de entrada, metadatos provenientes de tabla anterior
 - Direcciones MAC origen y destino, Ethertype, VLAN ID, PCP
 - Etiqueta MPLS, TC
 - Direcciones IP origen y destino, protocolo, ToS
 - Puertos origen y destino TCP/UDP/SCTP
 - Tipo y código ICMP
 - Otros que se han ido añadiendo:
 - Bits ECN
 - Flags TCP
 - Código de opción de ARP, direcciones MAC e IP en el mensaje ARP
 - Direcciones IPv6, flow label IPv6, tipo y código ICMPv6
 - Etc
 - **–** (...)

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags

- Prioridad:
 - Pueden verificarse varias entradas de la tabla
 - En ese caso se selecciona solo la de mayor prioridad

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags

Redes de Nueva Generación Área de Ingeniería Telemática

- Contadores:
 - Se actualizan cuando la entrada es seleccionada
- (...)

Counter	Bits	
Per Flow Table		
Reference Count (active entries)	32	Required
Packet Lookups	64	Optional
Packet Matches	64	Optional
Per Flow Entry		
Received Packets	64	Optional
Received Bytes	64	Optional
Duration (seconds)	32	Required
Duration (nanoseconds)	32	Optional
Per Port		
Received Packets	64	Required
Transmitted Packets	64	Required
Received Bytes	64	Optional
Transmitted Bytes	64	Optional
Receive Drops	64	Optional
Transmit Drops	64	Optional
Receive Errors	64	Optional
Transmit Errors	64	Optional
Receive Frame Alignment Errors	64	Optional
Receive Overrun Errors	64	Optional
Receive CRC Errors	64	Optional
Collisions	64	Optional
Duration (seconds)	32	Required
Duration (nanoseconds)	32	Optional

Per Queue		
Transmit Packets	64	Required
Transmit Bytes	64	Optional
Transmit Overrun Errors	64	Optional
Duration (seconds)	32	Required
Duration (nanoseconds)	32	Optional
Per Group		
Reference Count (flow entries)	32	Optional
Packet Count	64	Optional
Byte Count	64	Optional
Duration (seconds)	32	Required
Duration (nanoseconds)	32	Optional
Per Group Bucke		
Packet Count	64	Optional
Byte Count	64	Optional
Per Meter		
Flow Count	32	Optional
Input Packet Count	64	Optional
Input Byte Count	64	Optional
Duration (seconds)	32	Required
Duration (nanoseconds)	32	Optional
Per Meter Band		
In Band Packet Count	64	Optional
In Band Byte Count	64	Optional

- Instructions:
 - Cambio al paquete, acciones, etc, cuando se selecciona la entrada
 - Las hay de implementacion requerida y opcional
 - Ejemplos:
 - Enviar a un puerto de salida, descartar, asignar cola en el puerto out
 - Añadir/retirar etiquetas (MPLS, VLAN, PBB)
 - Modificar valor de un campo de cabecera
- (...)

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags

Redes de Nueva Generación Área de Ingeniería Telemática

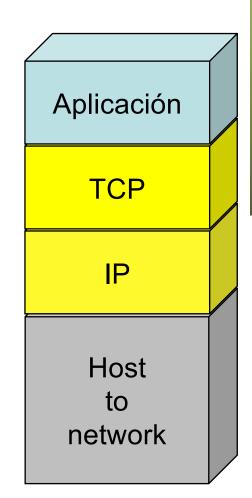
- Timeouts:
 - Máximo tiempo inactiva antes de expirar
- (...)

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags

Redes de Nueva Generación Área de Ingeniería Telemática

- Cookie:
 - Ahí el controlador puede guardar un valor
 - El switch no lo emplea para nada
- (...)

Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags


- Flags:
 - Diferentes opciones
 - Ejemplo:
 - Que envíe un mensaje al controlador al eliminarse o expirar una entrada
 - Que no lleve contadores de bytes o de paquetes

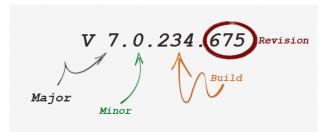
Match Fields	Priority	Counters	Instructions	Timeouts	Cookie	Flags

- TCP (puerto 6653), opcionalmente empleando TLS
- Hay mensajes:
 - De controlador a conmutador (...)
 - Asíncronos (desde el conmutador)
 - Simétricos

- TCP (puerto 6653), opcionalmente empleando TLS
- Hay mensajes:
 - De controlador a conmutador
 - Petición de capacidades
 - Establecer o preguntar por configuración o estado
 - Entregarle un paquete para enviar por un puerto
 - Asíncronos (desde el conmutador) (...)
 - Simétricos

- TCP (puerto 6653), opcionalmente empleando TLS
- Hay mensajes:
 - De controlador a conmutador
 - Asíncronos (desde el conmutador)
 - Envío al controlador de un paquete recibido
 - Notificación de entrada en tabla eliminada
 - Notificación de cambio de estado de un puerto
 - Simétricos (...)

- TCP (puerto 6653), opcionalmente empleando TLS
- Hay mensajes:
 - De controlador a conmutador
 - Asíncronos (desde el conmutador)
 - Simétricos
 - Hello, al establecer la conexión
 - Echo, para comprobar que el otro extremo está vivo y tal vez para medir latencia o bw
 - Error

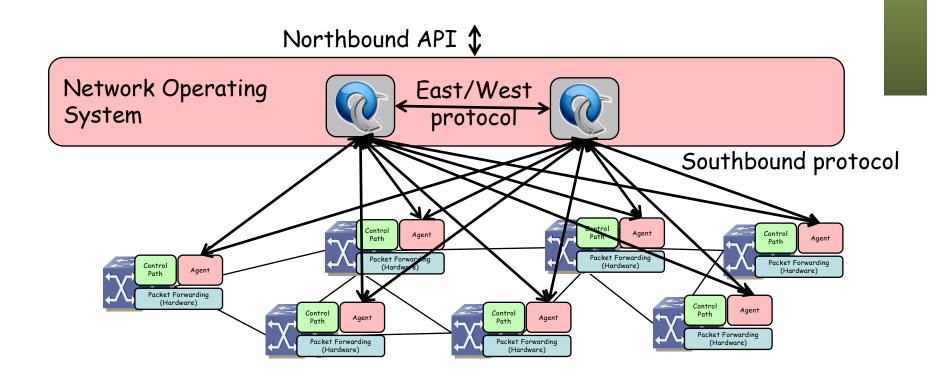


- https://www.opennetworking.org/sdn-resources/technical-library
- Versión 1.5.1 Abril de 2015
- Probablemente OF 1.0 sea lo más implementado en hardware
- Las siguientes versiones han ido introduciendo mejoras, más flexibilidad, pero también haciéndolo más complejo
- OF 1.1
 - Múltiples tablas
 - Soporte de acciones para MPLS (soporta multi-etiqueta)
 - Acciones sobre el TTL
 - Soporte de VLANs en QinQ
 - Soporte para agrupar puertos de cara a acciones
- (...)

- https://www.opennetworking.org/sdn-resources/technical-library
- Versión 1.5.1 Abril de 2015
- Probablemente OF 1.0 sea lo más implementado en hardware
- Las siguientes versiones han ido introduciendo mejoras, más flexibilidad, pero también haciéndolo más complejo
- OF 1.1
- OF 1.2
 - Soporte de campos de IPv6, ICMPv6, ND
 - Mejora la extensibilidad de las reglas de match
- (...)

- https://www.opennetworking.org/sdn-resources/technical-library
- Versión 1.5.1 Abril de 2015
- Probablemente OF 1.0 sea lo más implementado en hardware
- Las siguientes versiones han ido introduciendo mejoras, más flexibilidad, pero también haciéndolo más complejo
- OF 1.1
- OF 1.2
- OF 1.3.x
 - Meters por flujo (limitadores para QoS)
 - Soporte de PBB
- (...)

- https://www.opennetworking.org/sdn-resources/technical-library
- Versión 1.5.1 Abril de 2015
- Probablemente OF 1.0 sea lo más implementado en hardware
- Las siguientes versiones han ido introduciendo mejoras, más flexibilidad, pero también haciéndolo más complejo
- OF 1.1
- OF 1.2
- OF 1.3.x
- OF 1.4
 - Mayor extensibilidad
 - Soporte de puertos ópticos (frecuencias, potencia, etc)
- (...)


- https://www.opennetworking.org/sdn-resources/technical-library
- Versión 1.5.1 Abril de 2015
- Probablemente OF 1.0 sea lo más implementado en hardware
- Las siguientes versiones han ido introduciendo mejoras, más flexibilidad, pero también haciéndolo más complejo
- OF 1.1
- OF 1.2
- OF 1.3.x
- OF 1.4
- OF 1.5
 - Egress tables
 - Soporte para más que Ethernet
 - Flags TCP

APIs

- OpenFlow es un Southbound API
- El ONF asocia OpenFlow a SDN pero una SDN no necesita emplear necesariamente OpenFlow
- Podríamos considerar OF a día de hoy el API south estándar
- No hay Northbound API estandarizada, ni de facto
- No hay East/West API estandarizada

Controladores

NOX

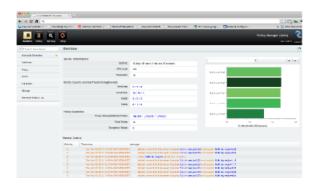
- http://www.noxrepo.org
- Desarrollado por Nicira, cedido el código en 2008
- Ofrece un API C++ para OF 1.0
- Muchos otros heredan de su código
- Incluye componentes de ejemplo para descubrir la topología, implementar un puente transparente y un switch distribuido
- Open Source

POX

- Hereda de NOX
- Permite el desarrollo en Python
- Open Source

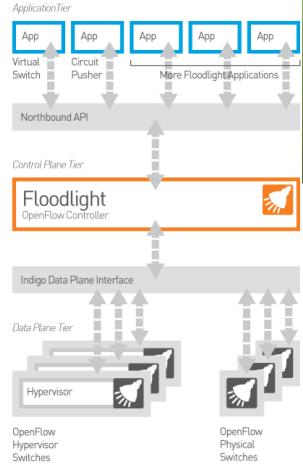
Beacon

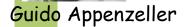
- https://openflow.stanford.edu/display/Beacon/Home
- Java (desarrollo con eclipse)
- Open Source



Controladores

SNAC


- http://www.openflowhub.org/display/Snac/SNAC+Home
- Incluye GUI web
- Incluye un lenguaje de definición de políticas
- Open Source



FloodLight

- http://www.projectfloodlight.org/floodlight/
- Basado en Java (basado en Beacon)
- Apoyado por Big Switch Networks
- Lo emplean para construir su controlador
- Open Source

VMware

- Controlador propietario
- vCenter Server controla los VDS (Virtual Distributed Switches)
- Otros componentes: vSphere, vCloud Director, vCloud Networking and Security, vCloud Automation Center, vCenter Site Recovery Manager, vCenter Operations Management Suite, vFabric Application Director for Provisioning
- Máximos vSphere 6.0:
 - 1024 VMs por host
 - 10 vNICs por VM
 - 1000 hosts por VDS
 - 1016 puertos de VDS activos por host
 - 60.000 puertos por VDS
 - 1000 hosts, 10.000 VMs en funcionamiento y 128 VDS por vCenter
 - 65.536 direcciones MAC por vCenter
 - 4/8 operaciones vMotion simultáneas por host por NIC 1/10Gbps
 - 16 VDS por host
 - etc

Nicira

- Fundada en 2007
- Miembro fundador del ONF
- En 2011 empieza a distribuir su NVP (Network Virtualization Platform)
- Es un controlador para OVS (Open vSwitch)
- No emplea solo OF sino OVSDB (Open vSwitch DataBase Management Protocol)
- Adquirida en 2013 por VMware (por unos 1260 millones de \$)

Otro software

- Frameworks
 - Onix, Trema, Maestro, Ryu
 - Indigo (para añadir OF a switches)
- FlowVisor:
 - https://github.com/OPENNETWORKINGLAB/flowvisor/wiki
 - Actúa como un proxy entre los switches y los controladores OF
 - Permite repartir recursos de la red entre varios controladores
- ONOS
 - http://onosproject.org/
 - Open Network Operating System (también gestionado por el ONF)
- Avior, Oflops, Cbench, Twister, FortNOX, LINC, Pantou, Of13softwitch, Cisco OnePK, Plexxi, etc etc
- ¡Se abrió la veda al software!