

Arquitectura de enrutamiento en redes IP

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Programación de Redes Grado en Ingeniería Informática, 3º

PROGRAMACIÓN DE REDES Área de Ingeniería Telemática

Temas de teoría

- 1. Introducción
- 2. Campus LAN
- 3. Encaminamiento
- 4. Tecnologías de acceso y WAN

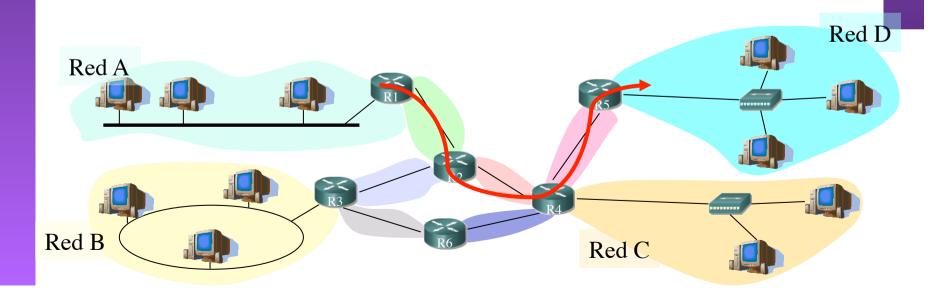
Objetivos

- Conocer los diferentes tipos básicos de protocolos de enrutamiento
- Conocer la estructura jerárquica de enrutamiento en la Internet

Contenido

- Introducción
- Enrutamiento jerárquico
 - -IGPs
 - EGPs
- Estructura de Internet

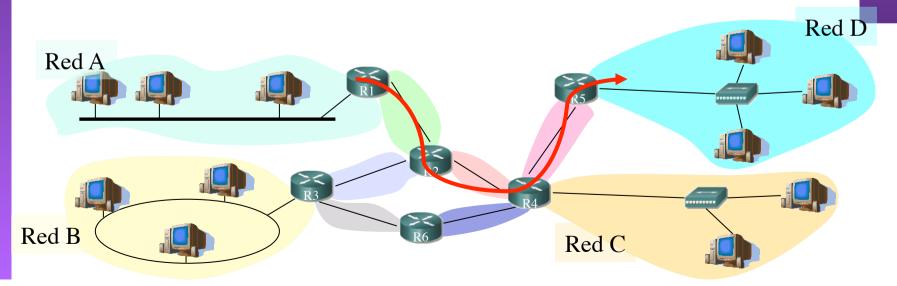
Nivel de red


Objetivo:

- Llevar paquetes del origen al destino
- Usar los enlaces de forma "eficiente"
- Direccionamiento:
 - Que permita identificar a los nodos
 - Tiene una estructura (no es plano)
 - Ésta reduce la información en los routers
- Enrutamiento
 - Elementos de encaminamiento deben "aprender" cómo es la red
 - Deben calcular "buenos" caminos a los destinos
 - Esto se almacena en las "tablas de rutas"

Routing

- "Ruta" es un camino (path) ⇒ acíclico (...)
- "Routing" = proceso de **calcular los caminos** que deben seguir los paquetes
- Se pueden calcular en función de:
 - Flujo
 - Tipo de tráfico
 - (origen, destino)
 - Destino



Conmutación

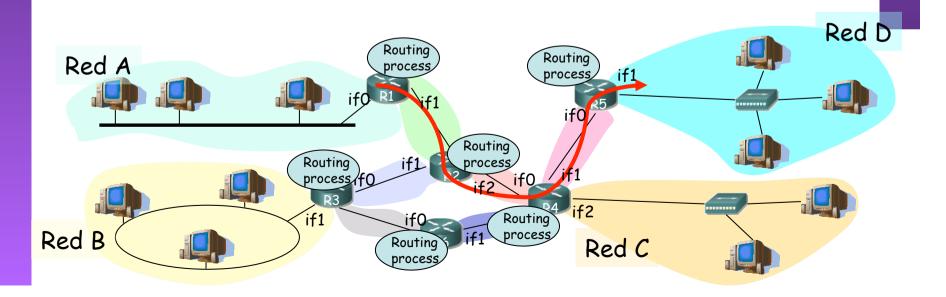
- Reenviar los bits por el camino
- Servicios posibles
 - Circuitos (telefonía, longitud de onda)
 - Paquetes
 Circuitos virtuales (...)

 Cada paquete del mismo flujo sigue la misma ruta
 - Datagramas (...) Cada paquete es conmutado independientemente

Características de IP

- Nivel de red
- Servicio de datagramas, sin conexión
- Routing en función de la dirección destino
- No fiable
- Best effort
- Provee:
 - Independencia de las tecnologías de cada red
 - Direccionamiento global
 - TOS
 - Fragmentación y reensamblado

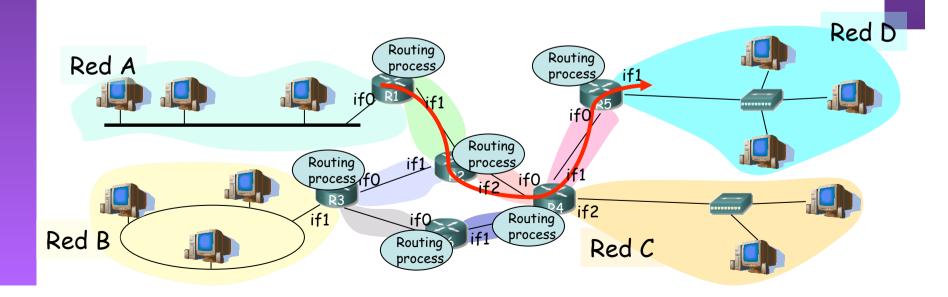
Otros aspectos


- Direccionamiento
 - Nivel 2: local, plano ⇒ no escalable
 - Nivel 3: según lugar, jerárquico ⇒ escalable
 - Direcciones temporales
 - Network Address Translation para reducir direcciones
- Routing basado en la dirección destino

Routing en IP

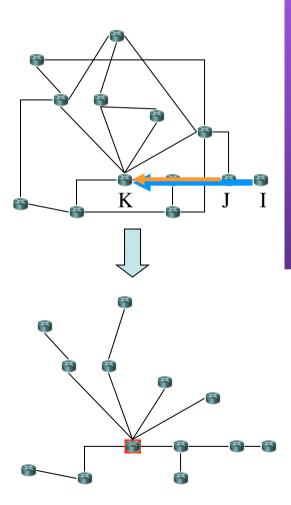
- Llevado a cabo por un proceso que se ejecuta en cada router (cálculo distribuido) (...)
- Resultado: una "tabla de rutas" en cada router (...)

Destino	Next-hop
Red A	IP de if1 de R1
Red B	IP de if0 de R3
Red C	IP de if0 de R4
Red D	IP de if0 de R4

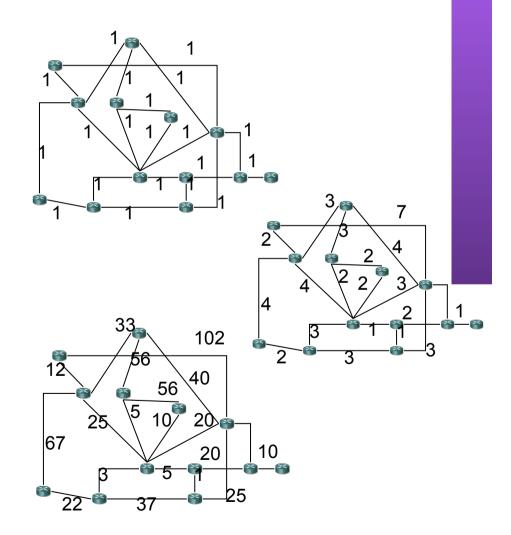


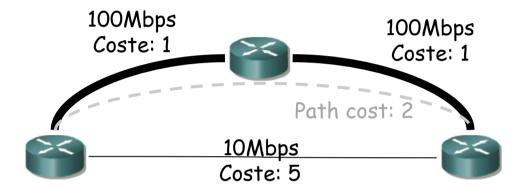
Forwarding en IP

- Tarea de "reenviar" por el interfaz adecuado el paquete recibido
- En base a la tabla de rutas del router
- La tabla indica cuál es el siguiente router (next-hop) en el camino
- El router tendrá conectividad a nivel 2 con él

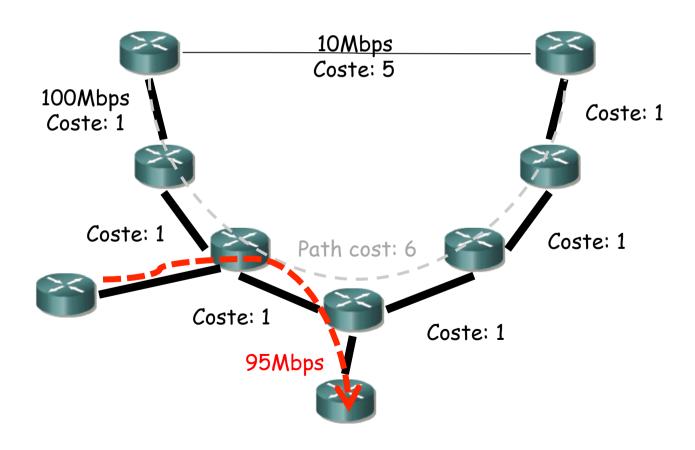

Destino	Next-hop
Red A	IP de if1 de R1
Red B	IP de if0 de R3
Red C	IP de if0 de R4
Red D	IP de if0 de R4

Principio de optimalidad


- Si router J está en el camino óptimo desde l a K entonces el camino óptimo de J a K está en la misma ruta (...)
- Si existiera una ruta mejor de J a K se podría concatenar con la de I a J
- El conjunto de rutas óptimas a un destino es un árbol = sink tree (...)
- Árbol ⇒ sin lazos (*loops*)


¿Camino óptimo?

- Shortest path
- ¿Cómo medirlo?
 - Número de saltos
 - Distancia geográfica
 - Retardo
- Peso de cada vértice:
 - BW (...)
 - Tráfico medio
 - Coste (€€)
 - Longitud media de cola
 - Combinación



Ejemplo

Ejemplo

Construcción de las tablas de rutas

¿Estática o dinámica?

Estática:

- Configuración manual
- Cambios lentos

Dinámica:

- Mediante un protocolo de enrutamiento
 - Escalabilidad
 - Adaptabilidad
 - Complejidad

¿Información global o descentralizada?

Global:

- Todos los routers tienen información completa de la topología y los costes de los enlaces
- Algoritmos "link state"

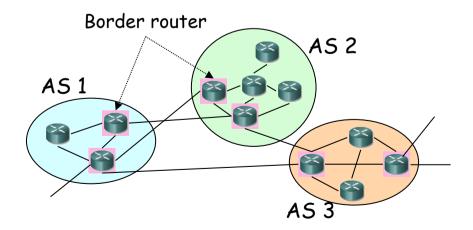
Descentralizada:

- El router conoce solo a sus vecinos
- Mediante un proceso iterativo intercambia esa información con sus vecinos
- Algoritmos "distance vector"

Enrutamiento jerárquico

Escala: con centenares de millones de destinos

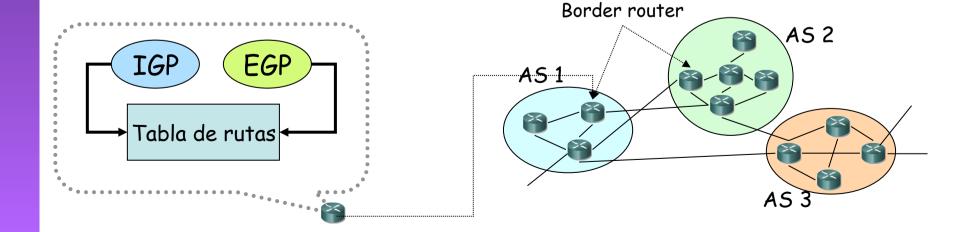
- ¡No se pueden tener todos los destinos en las tablas de rutas!
 - Memoria
 - CPU
 - BW para informar de rutas


- Autonomía administrativa
- Cada administrador de red quiere controlar el enrutamiento dentro de su red

Enrutamiento jerárquico

- Agrupar routers en regiones:
 "Autonomous Systems" (AS)
- Hay más de 40K (2013)
- Routers de un AS un solo administrador
- Normalmente los routers en el mismo AS emplean el mismo protocolo de enturamiento
 - IGP = Interior Gateway Protocol
 - Routers en diferentes AS pueden emplear diferente IGP
 - Interior oculto

- Comunicar información de enrutamiento entre los AS
 - EGP = Exterior Gateway
 Protocol
 - Entre los border routers o routers frontera de los AS

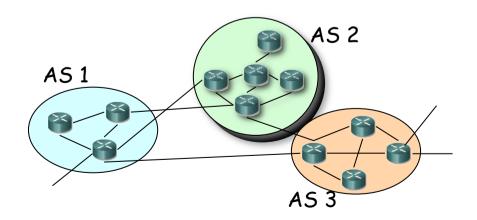


Enrutamiento jerárquico

Border router

- La tabla de rutas es configurada por ambos
- IGP: rutas a destinos internos
- EGP: rutas a destinos externos

- IGP da las rutas internas
- ¿Si hay más de un enlace al exterior?
 - EGP debe informar de a qué destinos se puede llegar por cada uno

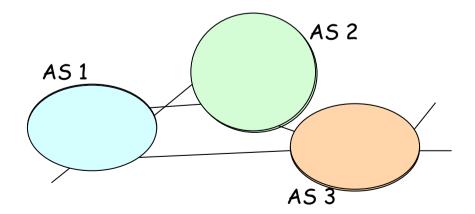

Interior Gateway Protocols (IGP)

Características:

- Simples
- Calculan caminos eficientes respecto a una métrica
- Recalculan rápidamente ante cambios
- No escalan bien para redes grandes

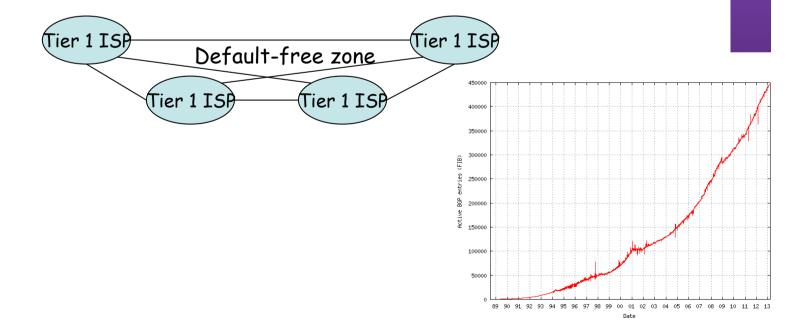
Los más comunes:

- *RIP*: Routing Information Protocol
- OSPF: Open Shortest Path First
- EIGRP: Interior Gateway Routing Protocol (propietario de Cisco)

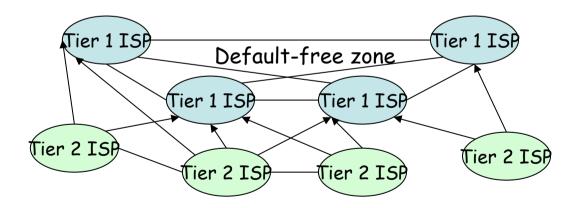

Exterior Gateway Protocols (EGP)

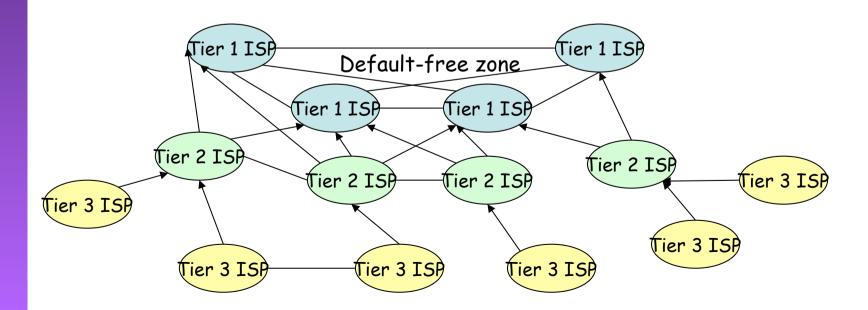
Características:

- Mejor escalabilidad
- Habilidad para agregar rutas
- Habilidad para expresar políticas
- Mayor carga en el router

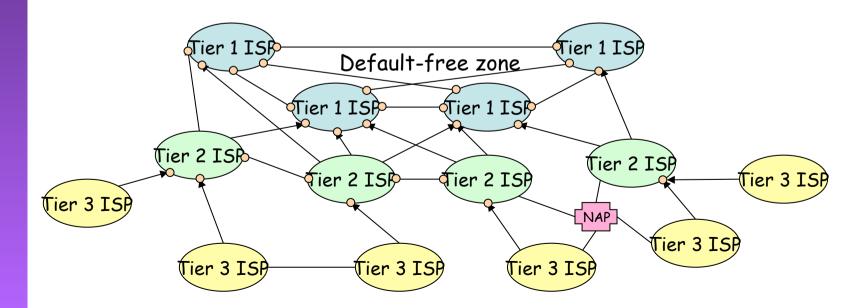

BGP (Border Gateway Protocol):

- Estándar de facto
- Algoritmo path-vector : anuncia el camino completo al destino (como una secuencia de ASs)
- Los anuncios emplean conexiones TCP entre los routers


- Tier-1 ISPs o Internet backbone networks
 - Grandes proveedores internacionales (AT&T, BBN, BT, Cable&Wireless, Sprint, UUNET, etc.)
 - Conexión completamente mallada
 - No emplean "ruta por defecto", tienen rutas a todas las redes (2013: más de 400K rutas)


Tier-2 ISPs

- Regionales o nacionales
- Se conectan (peering agreement) a unos pocos tier-1 ISPs (ellos son los clientes y el tier-1 el proveedor de tránsito)
- Se pueden conectar a otros tier-2



- Tier-3 ISPs
 - ISPs locales de acceso
 - Se conectan a uno o más tier-2 y entre ellos

- Points of Presence (POPs)
- NAPs (Network Access Points) o IXP (Internet eXchange Point)
 - Son redes de alta velocidad en sí mismas
 - Pretenden ahorrar €€
 - Reducir retardo
 - Mantener local el tráfico local (ej: Espanix)

Resumen

- Los routers (conmutadores de paquetes) reenvían paquetes IP en función de sus tablas de rutas
- Aprenden estas tablas por medio de protocolos de enrutamiento
- La estructura de Internet es jerárquica (Tiers)
- Esto lleva a un enrutamiento jerárquico dividido en:
 - Intradomain
 - Interdomain
 - Diferente problemática para ambos