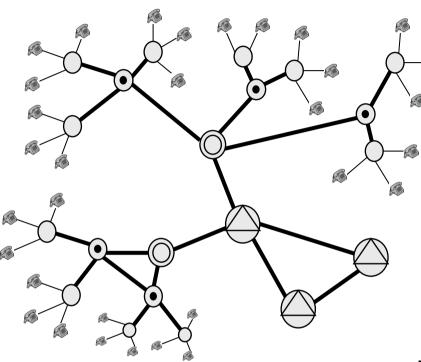
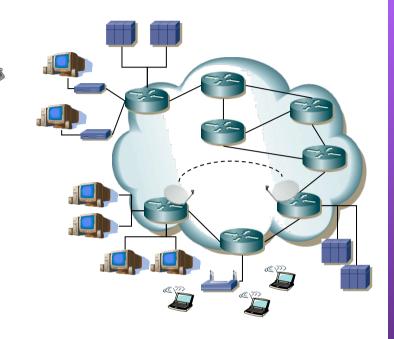
QoS: Arquitecturas y elementos

Área de Ingeniería Telemática http://www.tlm.unavarra.es

Máster en Comunicaciones

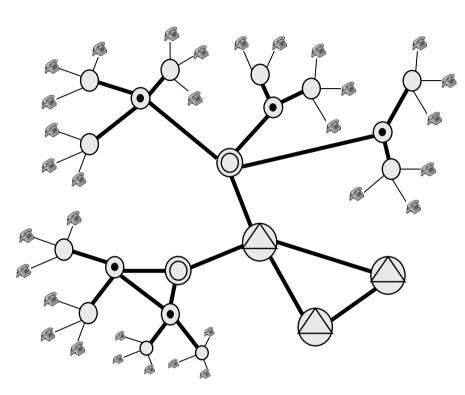


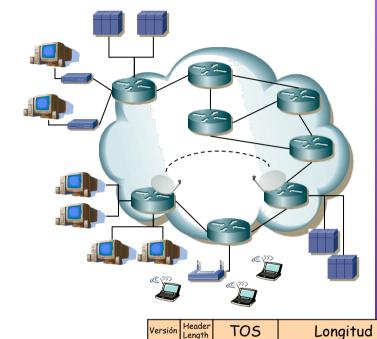

Objetivos

 Conocer los elementos básicos en cualquier arquitectura que ofrezca QoS

Escenarios históricos

PSTN


- Conmutación de Circuitos
- BW fijo y garantizado
- Retardo fijo y acotado
- Diseñada para tráfico de voz
- Para datos BW sin usar


Redes de Conmutación de paquetes

- No single points of failure
- Circuitos virtuales (ATM, FR, X.25)
 - RT traffic
 - Voz sobre circuitos no era comercial hasta hace poco (no económico)
- ATM busca las características de la PSTN

Escenarios históricos

16-bit identifier

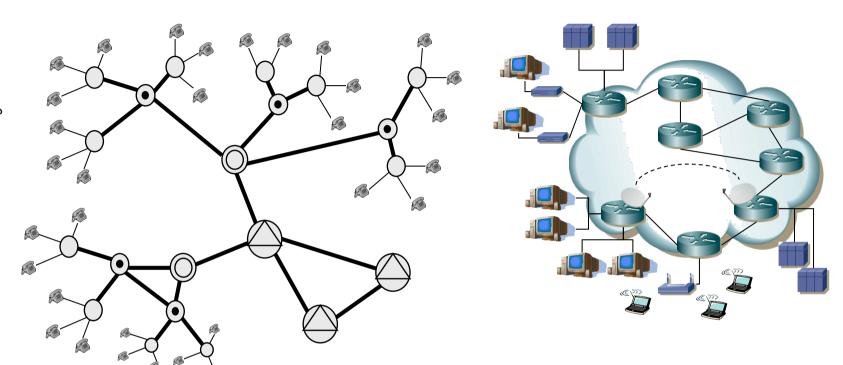
Protocolo Header checksum

Dirección IP origen
Dirección IP destino

[opciones]

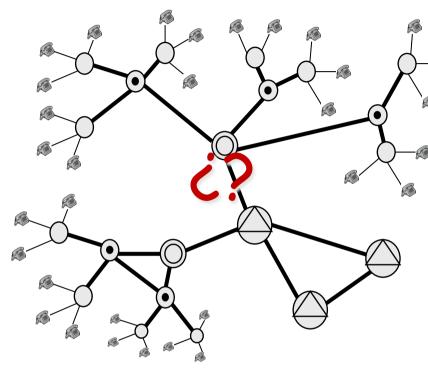
[Datos]

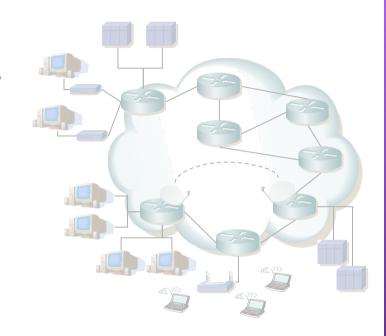
PSTN


- Conmutación de Circuitos
- BW fijo y garantizado
- Retardo fijo y acotado
- Diseñada para tráfico de voz
- Para datos BW sin usar

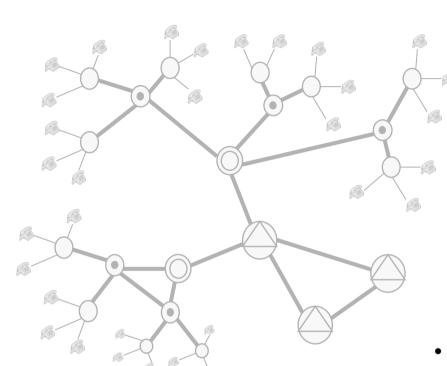
Tecnología IP

- Conmutación de paquetes
- Best Effort
- TOS, no usado realmente

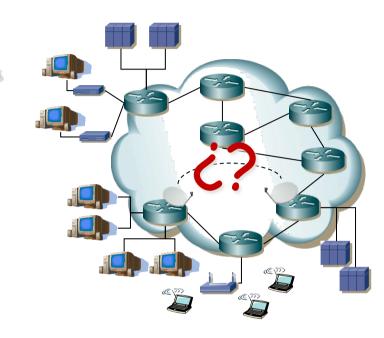

Escenarios históricos


- ¿ Tener dos infraestructuras ?
 - Más caro
 - Más equipos
 - Más BW sin usar
 - Gestión independiente

Escenarios históricos

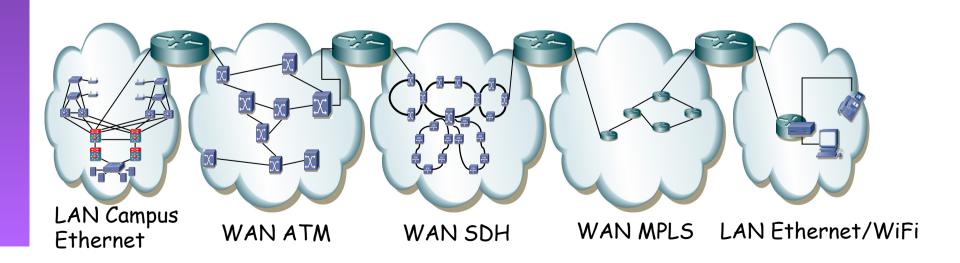

- ¿ Tener dos infraestructuras ?
 - Más caro
 - Más equipos
 - Más BW sin usar
 - Gestión independiente

- ¿Por qué no usar simplemente la PSTN?
 - No optimizada para datos
 - Arquitectura rígida
 - Ineficiente en asignaciones de BW
 - Inadecuada para sesiones cortas, de tasa variable, multipunto, etc



Escenarios históricos

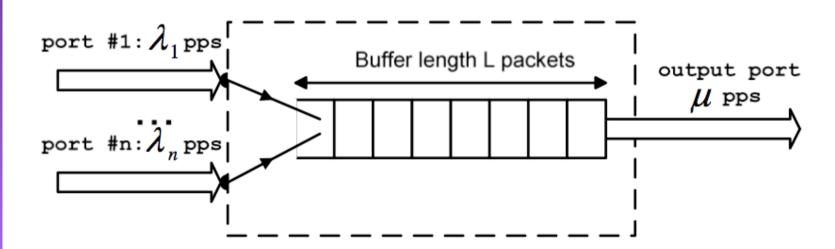
- Deberá tener soporte de QoS
- Servicio equivalente para la voz
- Aprovechar multiplexación estadística
- ATM seleccionada para RDSI de banda ancha
- No extendida


P?

- Best Effort aunque sea sobre tecnologías con QoS
- Separar los flujos IP en flujos de tecnología con QoS
- o añadir QoS a IP
- Para ello tratar de forma diferenciada al tráfico de datos
- Hoy solo en el dominio de redes concretas

IP QoS

- Tecnologías de capa 2 ofrecen QoS (ATM, Ethernet...)
- IP es la tecnología de nivel de red extremo a extremo más extendida
- Diferentes tecnologías capa 2 pueden ser empleadas en el camino capa 3
- Lo más razonable es mapear QoS de capa 3 en la QoS de capa
 2 de cada tecnología en cada salto
- En vez de mapear capacidades de capa 2 de un salto en el siguiente


Servicios / Arquitecturas

- Best Effort Service
- Integrated Services
- Differentiated Services

Servicio Best Effort (BE)

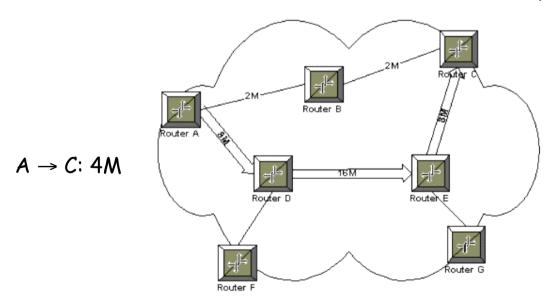
- Se trata igual a todo el tráfico
 - Sin separación entre flujos
 - Sin diferenciación entre paquetes
- No garantiza ningún SLA
- Ante congestión
 - Crecen los retardos sin control
 - Pérdidas sin control

IntServ

IETF

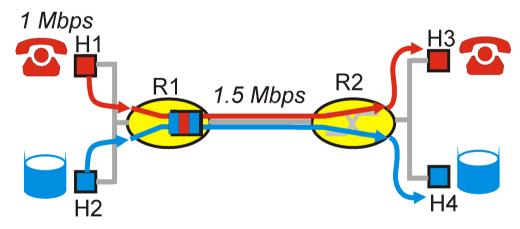
- Para cada flujo (puede ser agregado) reserva recursos en todo el camino
- Orientado a conexión
- Cada router del trayecto ha de tomar nota y efectuar la reserva solicitada (guardan estado)
- Requiere un protocolo de señalización que soporten todos los routers: RSVP
- No requiere modificar los protocolos existentes
- RSVP no hace la reserva, solo la señaliza
- Poco utilizado salvo en algunos escenarios de videoconferencia
- Poco escalable
- Resurgiendo con MPLS

DiffServ


IntServ no escala bien

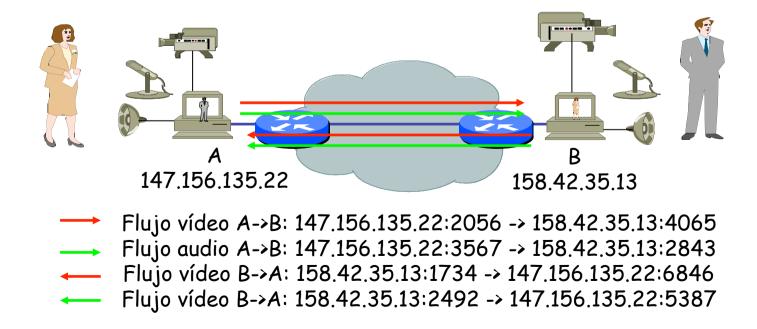
- RFC 2475, 2638
- Clasificar el tráfico en pocas clases
- Clasifican los ingress routers (complejidad en la frontera) con un codepoint en la cabecera IP
- DiffServ mapea en cada nodo el codepoint en el paquete a un PHB en concreto
- PHB = Per Hop Behavior
 - El tratamiento que se le da al paquete en cuestión de scheduling y gestión de cola en ese nodo
 - El mapeo codepoint ↔ PHB debe ser configurable
- No es sensible a los requisitos de un flujo individual

QoS routing / Traffic Engineering


- Encontrar caminos "buenos" para flujos con requisitos específicos de QoS
- Usar la red de forma eficiente: aumentar la probabilidad de aceptar peticiones futuras
- Es complicado:
 - Información precisa sobre el estado de la red es difícil de mantener
 - Calcular caminos que cumplan requisitos de QoS es costos (computacionalmente hablando)
- Constraint-based Routing
 - Calcular caminos teniendo en cuenta no solo QoS sino también políticas

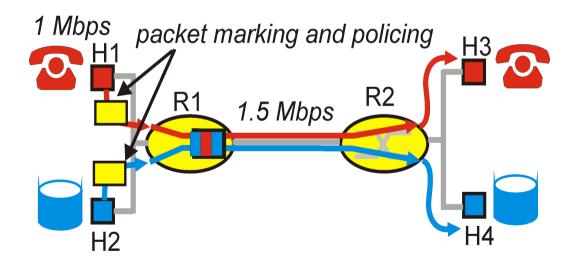
Clasificación / Marcado

- ¿Cómo distinguir entre flujos?
- Ejemplo: Teléfono IP a 1Mbps, comparte enlace de 1.5Mbps con FTP
 - Ráfagas de FTP pueden congestionar el router y causar fallos en el audio
 - Queremos dar prioridad al audio sobre el FTP



Los routers necesitan distinguir el tráfico de diferentes clases y aplicarles diferentes políticas: packet marking (generalmente a la entrada a la red)

Concepto de flujo en QoS


- Secuencia de datagramas que se produce como resultado de una acción del usuario y requiere la misma QoS
- Normalmente es simplex (unidireccional)
- Es la entidad más pequeña a la que los routers pueden aplicar una determinada QoS
- Ejemplo: una videoconferencia estaría formada por cuatro flujos, dos en cada sentido, uno para el audio y otro para el vídeo.
- Los flujos pueden agruparse en clases; todos los flujos dentro de una misma clase reciben la misma QoS.

Traffic shaping y policing

- Marcar, descartar o retrasar el tráfico en exceso
- ¿Qué sucede si las aplicaciones no se comportan como deben?
 - Por ejemplo la aplicación de audio envía más de lo previsto
 - Necesitamos forzar que las fuentes se comporten como se ha acordado

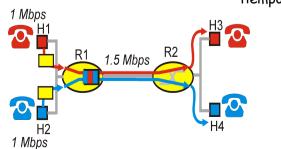
Forzar que una clase de tráfico se comporte dentro de lo contratado: *policing* (típicamente a la entrada)

- Gestión de cola
 - ¿Qué paquetes tirar si se llena?
- Planificación de recursos (scheduling)
 - El recurso normalmente es el enlace
 - ¿Cómo organizar a los paquete que deben enviarse?
 - ¿Dar prioridades? ¿Repartir la capacidad?

Mientras se ofrece aislamiento es deseable emplear los recursos de forma eficiente (work conserving): scheduling (en todos los routers del camino)

Connection Admission Control (CAC)

- ¿Puede la red cursar el nuevo flujo de tráfico manteniendo los parámetros de QoS ofrecidos a todos los usuarios?
- Aceptarlo en la red o rechazarlo
- No se pueden satisfacer las demandas más allá de la capacidad del enlace
- Es algo básico desde siempre en redes de conmutación de circuitos porque hay reserva de recursos
- Con flujos CBR el cálculo es relativamente simple
- ¿ Y con flujos VBR ?

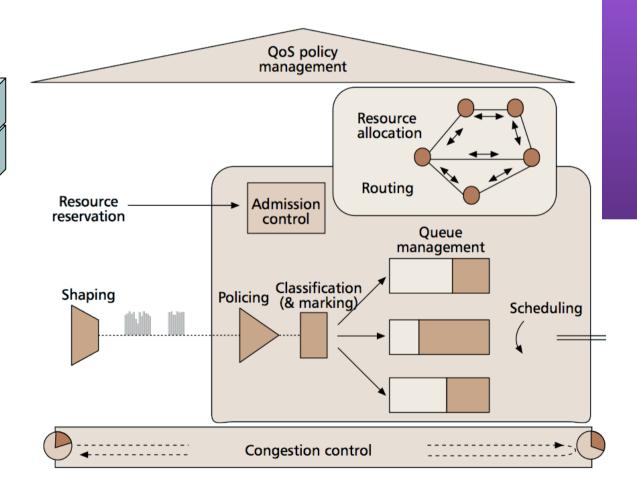

ABR y UBR

VBR

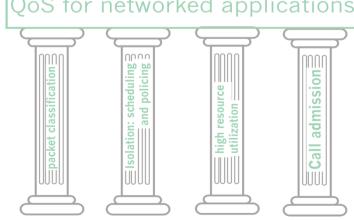
CBR

tiempo

El flujo declara sus necesidades pero la red puede *bloquear* al flujo si no puede satisfacerlas: *call admission*



Localización de los elementos


- Router, switch o similar
- Tienen sentido en más de una capa

Network Layer Link Layer

Resumen

- Best Effort / IntServ / DiffServ
- Connection Admission Control (CAC)
 - ¿Puede la red cursar el nuevo flujo de tráfico manteniendo los parámetros de QoS ofrecidos a todos los usuarios?
- Planificación de recursos (scheduling)
 - El recurso normalmente es el enlace
 - ¿Cómo organizar a los paquete que deben enviarse?
 - ¿Dar prioridades? ¿Repartir la capacidad?
- Traffic shaping y policing
 - Marcar, descartar o retrasar el tráfico en exceso
- Monitorización
 - Analizar la cantidad de tráfico que entra en la red los for networked applications
- QoS routing / Traffic Engineering
- Clasificación
 - ¿Cómo distinguir entre flujos?
- Gestión de cola
 - ¿Qué paquetes tirar si se llena?

