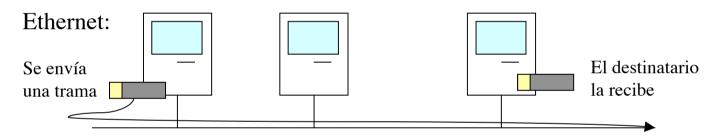
Conceptos básicos de redes TCP/IP

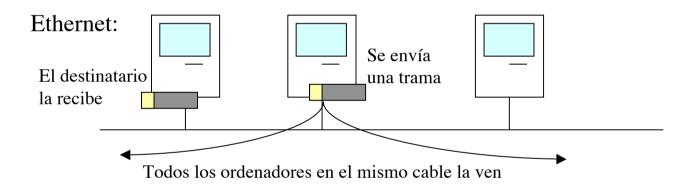
Francisco José Naranjo


Area de Ingeniería Telemática Departamento de Automática y Computación Universidad Pública de Navarra franciscojose.naranjo@unavarra.es

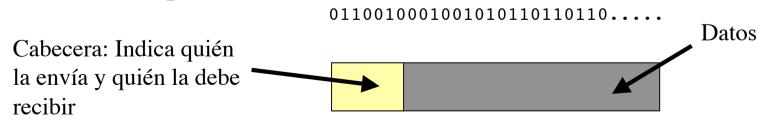
Laboratorio de Interfaces de Redes http://www.tlm.unavarra.es/asignaturas/lir

LANs

- Inicialmente servidores y ordenadores personales en Redes de Area Local (Local Area Network)
- Se podía dar comunicación dentro de la LAN

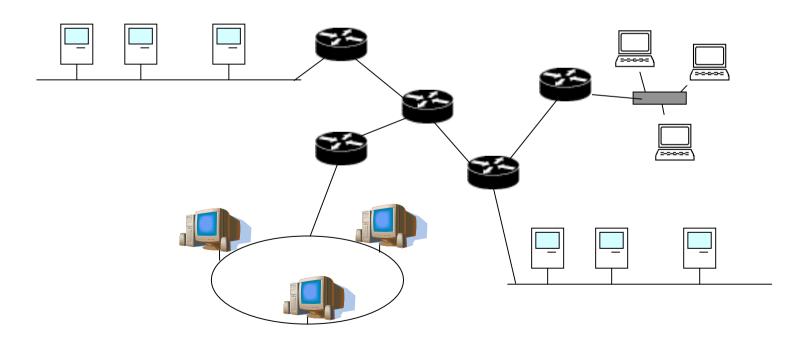


Todos los ordenadores en el mismo cable la ven

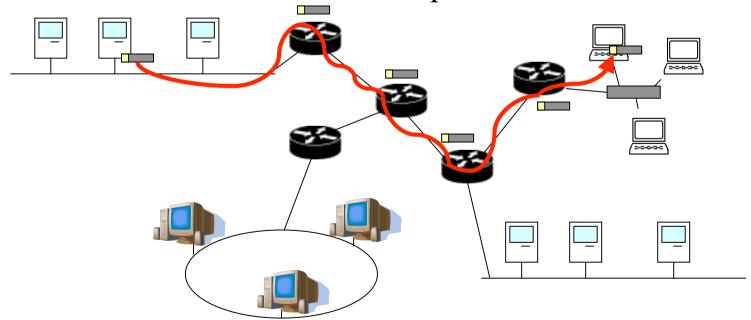


LANs

- Inicialmente servidores y ordenadores personales en Redes de Area Local (Local Area Network)
- Se podía dar comunicación dentro de la LAN


• Formato típico de la trama:

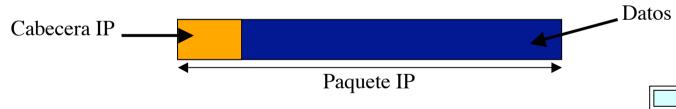
Internetworking


- Se desea que máquinas en diferentes redes y con diferentes sistemas operativos puedan intercomunicarse
- Los elementos que interconectan las diferentes redes se llamaron "gateways" y posteriormente "routers"

Internetworking

- Un "paquete" con información podrá ir de un ordenador a otro cualquiera de la Interconexión de Redes o
- → "Internet"
- → Lo hace a través de los routers que interconectan las redes
 - Los routers conocen los caminos para ir de una red a otra

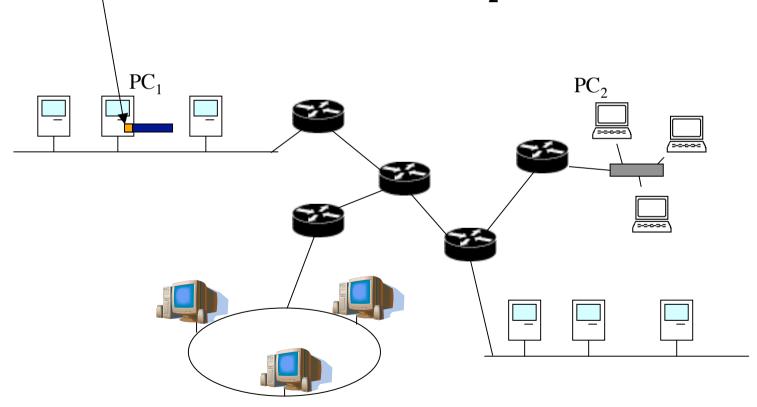
Problemas


- Las redes pueden ser de diferentes tecnologías
- Diferentes sistemas operativos emplean diferentes protocolos para que sus programas se comuniquen (AppleTalk, NetBios, Banyan...)
- Se necesitan unos protocolos que permitan interconectar diferentes tecnologías y diferentes sitemas operativos (estándar abierto)

TCP/IP

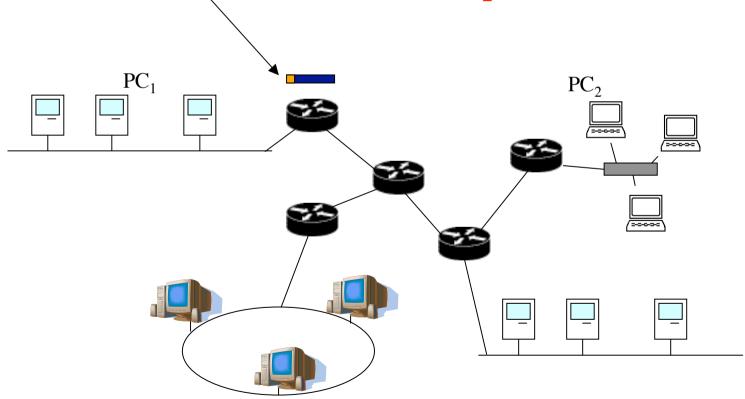
- TCP/IP es una *familia de protocolos* que permiten la comunicación entre máquinas en diferentes redes en una Internet TCP/IP
- IP es el protocolo que permite que esta comunicación sea posible
 - □ IP = Internet Protocol
- La información se transmite dentro de "paquetes IP"
 - □ Internet es una red de *conmutación de paquetes*
- El "paquete IP" tiene una cabecera con información para que se pueda hacer llegar el paquete a su destino y una sección con datos

- Cada interfaz de cada máquina tiene una "dirección IP"
- En la cabecera IP aparece la dirección IP del interfaz de la máquina origen del paquete y la dirección del interfaz de la máquina destino

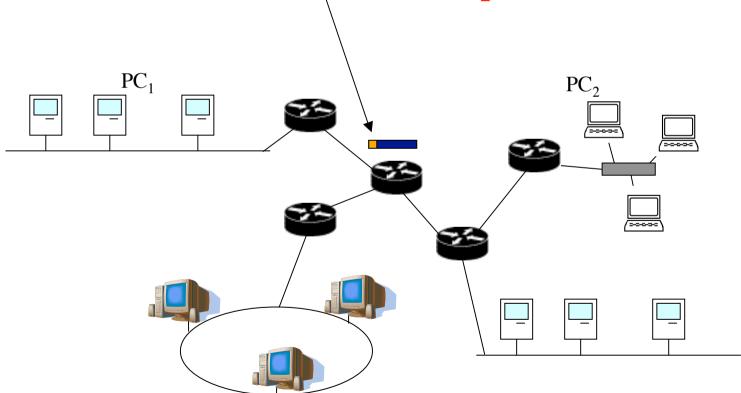

Direcciones IP

→ Las direcciones IP son números de 32 bits

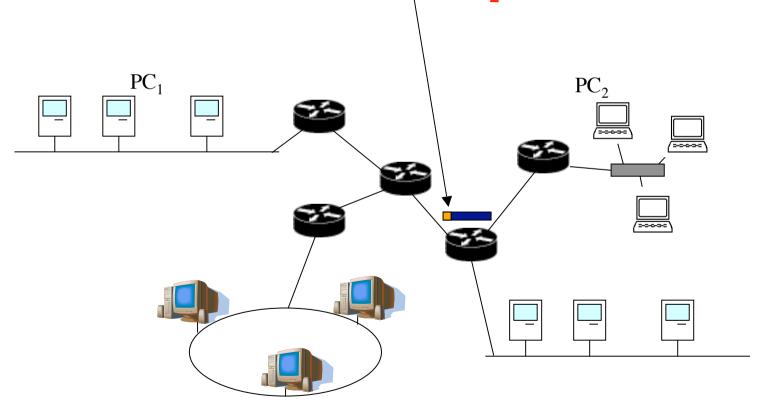
- Los "routers IP" deciden el camino que deben seguir los paquetes en base a la dirección IP destino que aparece en cada uno de ellos
- El router IP es básicamente un ordenador con varios interfaces de red cada uno conectado a una red diferente, tal vez de la misma o de diferente tecnología



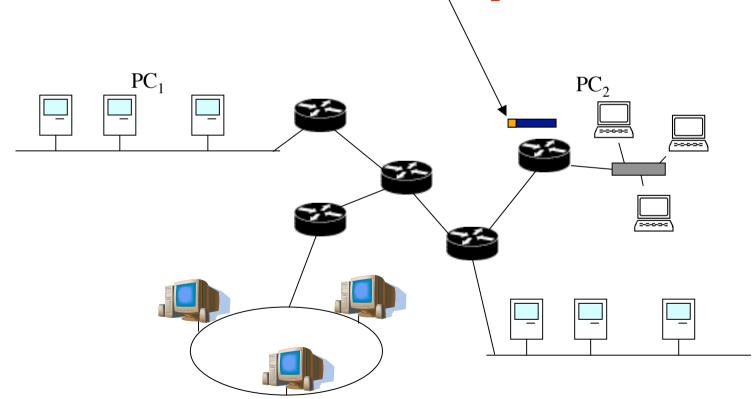
- La máquina PC₁ envía un paquete a la máquina PC₂
- → En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - dirección IP destino = dirección IP de PC₂



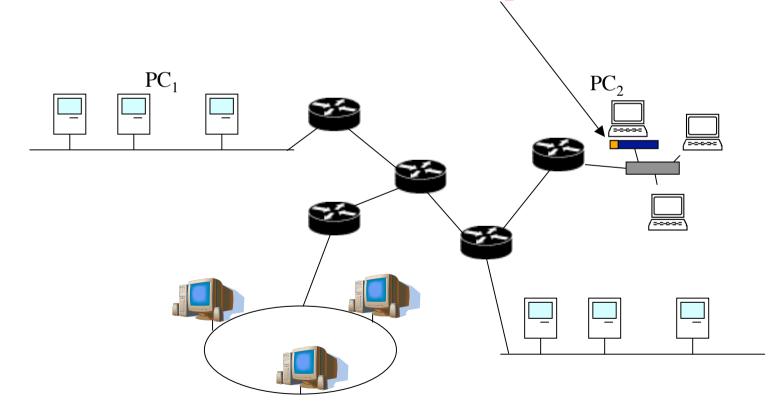
- La máquina PC₁ envía un paquete a la máquina PC₂
- En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - □ dirección IP destino = dirección IP de PC₂



- La máquina PC₁ envía un paquete a la máquina PC₂
- En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - ☐ dirección IP destino = dirección IP de PC₂

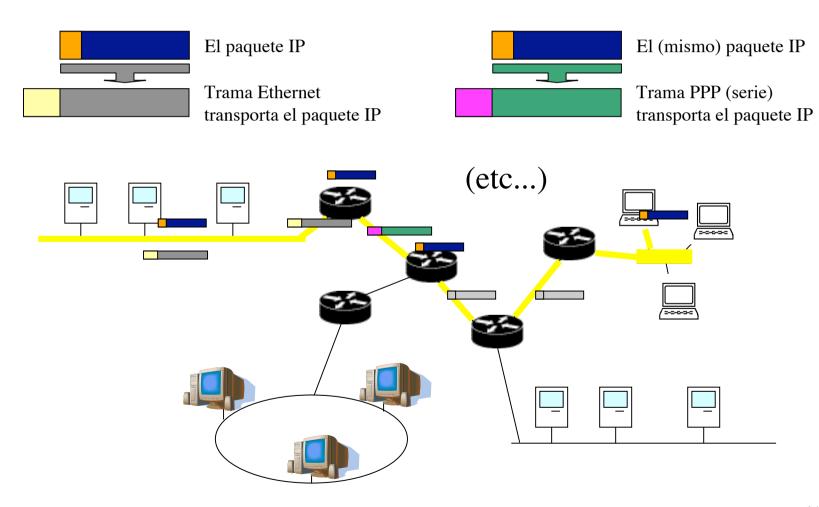


- La máquina PC₁ envía un paquete a la máquina PC₂
- En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - ☐ dirección IP destino = dirección IP de PC₂



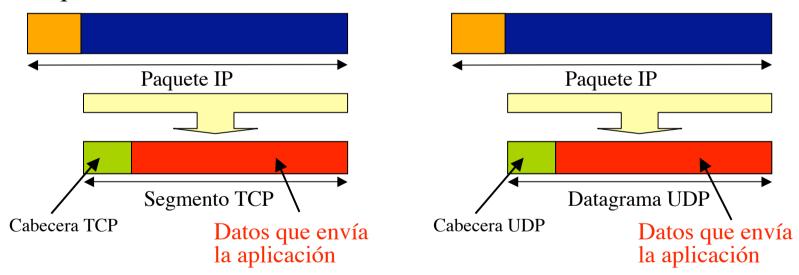
- La máquina PC₁ envía un paquete a la máquina PC₂
- En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - □ dirección IP destino = dirección IP de PC₂

- La máquina PC₁ envía un paquete a la máquina PC₂
- En la cabecera:
 - □ dirección IP origen = dirección IP de PC₁
 - □ dirección IP destino = dirección IP de PC₂



Cómo se transporta IP

RFC 791


■ El paquete IP atraviesa diferentes redes hasta llegar al destino

TCP y UDP

- Otros dos protocolos muy importantes de la familia TCP/IP son
 - □ TCP = Transmission Control Protocol
 - □ UDP = User Datagram Protocol
- → Añaden funcionalidades a IP
- "Emplean" IP:

Sencilla comunicación entre aplicaciones sobre TCP o UDP empleando APIs (Application Programming Interfaces)

Características de TCP

RFC 793

- Los datos que envíe una aplicación a otra en otra máquina llegarán seguro (recuperación ante pérdidas)
- Si la aplicación envía varios bloques de información éstos llegarán en el mismo orden en que se enviaron (mantiene el orden de secuencia)
- Antes de poder enviar datos hay que "establecer una conexión". Especificar entre qué par de aplicaciones en qué máquinas será la comunicación (orientado a conexión)
- Ambos extremos de la conexión pueden enviar información al otro extremo (full-duplex)
- → Intenta no congestionar la red

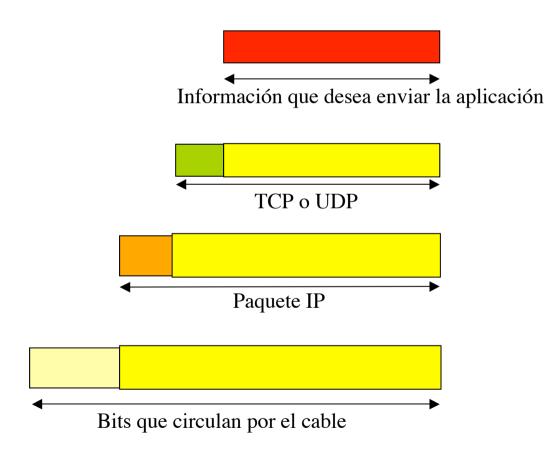
Características de UDP

RFC 768

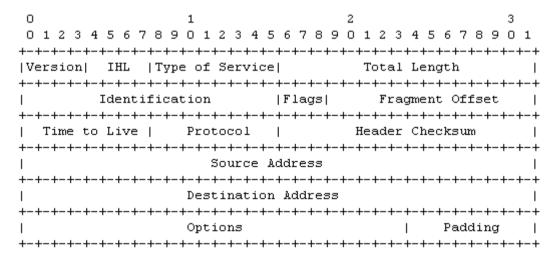
- Los datos enviados a otra aplicación en otra máquina pueden perderse
- →■ Si se envían varios bloques de información pueden llegar desordenados
- No hay conexión. Para cada bloque de información que se desea enviar hay que especificar el destino
- → No intenta controlar la congestión en la red

Próximo día

El paradigma cliente-servidor


Servicios clásicos de Internet

WWW: El servicio y el servidor de Web



Encapsulación

IP Header

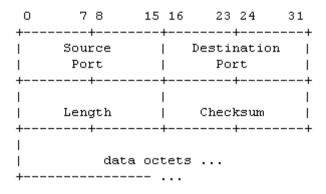
Example Internet Datagram Header

Figure 4.

TCP Header

TCP Header Format

0		1			2						(3	
0 1 2 3	45678	90123	4 5	6 7	8 9 0	1 2	3	4 5	6 7	8	9 (0 1	
+-													
1	Destination Port												
+-													
Sequence Number													
+-													
Acknowledgment Number													
+-+-+-+	-+-+-+-+	-+-+-+-	+-+-+	+-+	+-+-	+-+-	+-+	+-	+-+-	+-+	+-	-+-+	
Data		U A P F	US F									- 1	
Offset	fset Reserved R C S S Y I Window											- 1	
1 1		G K H T	N N									- 1	
+-+-+-+	-+-+-+-+	-+-+-+-	+-+-+	+-+	+-+-	+-+-	+-+	+-	+-+-	+-+	+-	-+-+	
Checksum					Urgent Pointer								
+-+-+-+	-+-+-+-+	-+-+-+-	+-+-+	+-+	+-+-	+-+-	+-+	+-	+-+-	+-+	+-	-+-+	
Options					Padd							- 1	
+-+-+-+	-+-+-+-+	-+-+-+-	+-+-+	+-+	+-	+-+-	+-+	+-	+-+-	+-+	+-	-+-+	
data													
+-+-+-+	-+-+-+-+	-+-+-+-	+-+-+	+-+	+-+-	+-+-	+-+	+-	+-+-	+-+	+-	-+-+	


TCP Header Format

Note that one tick mark represents one bit position.

Figure 3.

UDP Header

User Datagram Header Format