Procesos de llegadas

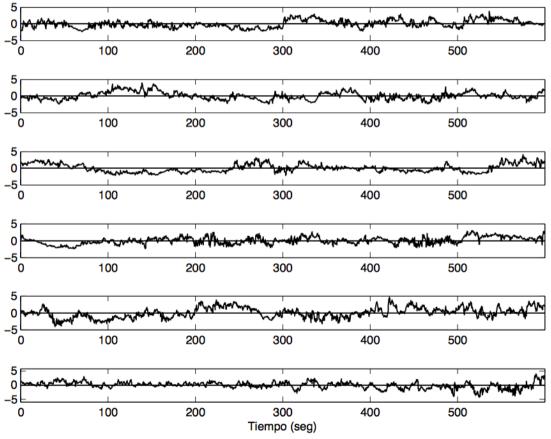
Area de Ingeniería Telemática http://www.tlm.unavarra.es

Grado en Ingeniería en Tecnologías de Telecomunicación, 4º

Gestión y Planificación de Redes y Servicios Área de Ingeniería Telemática

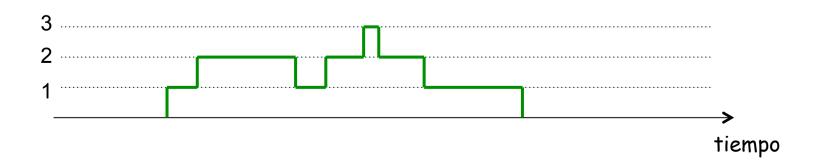
Tipos de procesos estocásticos

- Es una familia de variables aleatorias {X(τ)} indexadas por el parámetro τ (tiempo)
- Ejemplo: Temperatura en una sala

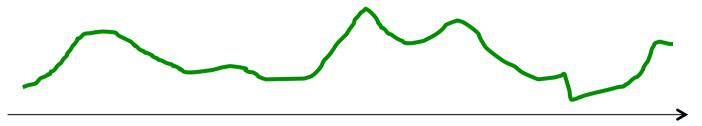


Hay múltiples realizaciones posibles (funciones temporales)

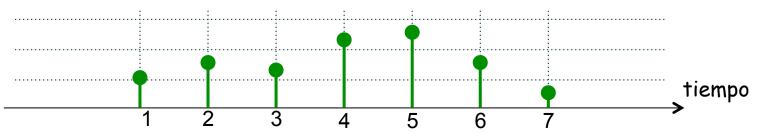
- Es una familia de variables aleatorias {X(τ)} indexadas por el parámetro τ (tiempo)
- Ejemplo: Número de personas en un cine podría modelarse así
- Tipos: según los valores que toma X(τ), según los valores de la variable de tiempo y según las dependencias entre los X(τ)



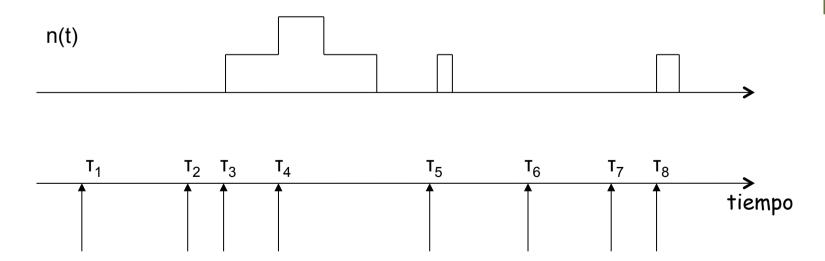
- Es una familia de variables aleatorias {X(τ)} indexadas por el parámetro τ (tiempo)
- Ejemplo: Número de personas en un cine podría modelarse así
- Tipos
 - Estado discreto o continuo
 - "Estados" son los valores que toman los X(τ)
 - Ejemplo: temperatura en la sala sería de estado continuo
 - Ejemplo: nº personas en cine sería de estado discreto
 - Los de estado discreto se suelen llamar "cadenas"
 - (...)



- Es una familia de variables aleatorias {X(τ)} indexadas por el parámetro τ (tiempo)
- Ejemplo: Número de personas en un cine podría modelarse así
- Tipos
 - Estado discreto o continuo
 - "Estados" son los valores que toman los X(τ)
 - Ejemplo: temperatura en la sala sería de estado continuo
 - Ejemplo: nº personas en cine sería de estado discreto
 - Los de estado discreto se suelen llamar "cadenas"
 - Tiempo discreto o continuo
 - Es continuo si el estado puede cambiar en cualquier instante de un intervalo de tiempo real (en discreto se suele usar X_n en vez de X(τ))
 - Ejemplo: ambos ejemplo anteriores serían de tiempo continuo
 - Ejemplo: cada día tomamos la temperatura de un paciente, sería de tiempo discreto (día 1, 2, 3, etc) y estado continuo



- Ejemplo: el número de clientes en cola forma un cadena de tiempo continuo {n(τ)}
- Ejemplo: los instantes en que se producen unas llegadas forman un proceso de tiempo discreto $\{\tau_n\}$
- (No confundir con que esa variable dé valores que interpretemos como tiempo y por lo tanto sean continuos)

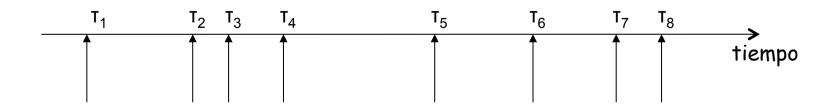


Gestión y Planificación de Redes y Servicios Área de Ingeniería Telemática

Procesos de llegadas

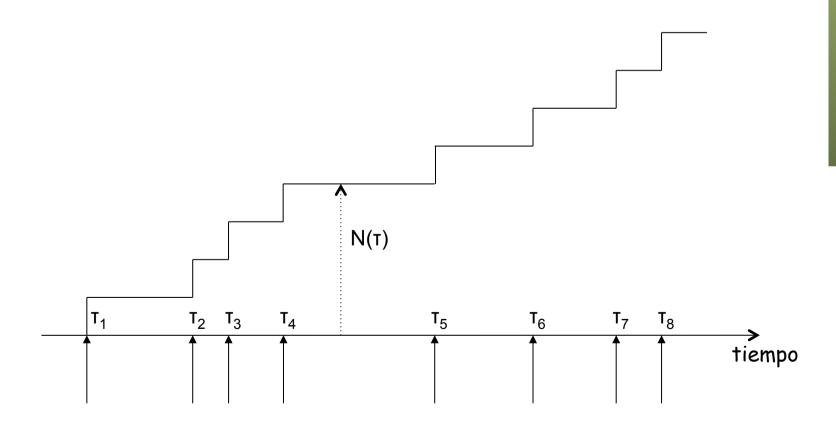
Proceso de llegadas

- Arrival process
- Es una secuencia de variables aleatorias $\{\tau_n\}$ crecientes
- Que sean crecientes quiere decir que el valor de una está condicionado a ser siempre mayor que el de la anterior
- Representan los instantes en que se produce algo (sean llegadas, salidas o lo que sea)
- No vamos a ver casos de múltiples llegadas simultáneas (bulk arrivals)



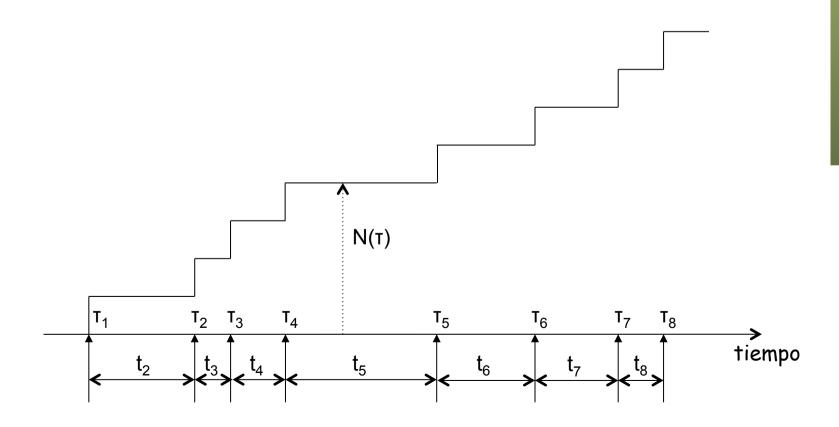
Proceso de cuenta de llegadas

- Arrival counting process
- Una representación alternativa al proceso de llegadas es {N(τ)} el número acumulado de llegadas en el intervalo (0, τ]
- Este proceso es de tiempo continuo (número infinito no contable de variables aleatorias)



Proceso de cuenta de llegadas

- Interarrival times
- Otra representación alternativa es {t_n} el tiempo entre dos llegadas consecutivas
- Este proceso es de tiempo discreto (número infinito pero contable de variables aleatorias)



Procesos de llegadas

 Habría que especificar la dependencia entre todas las variables mediante la función de distribución conjunta

$$P[X(\tau_1) \le x_1, X(\tau_2) \le x_2, ..., X(\tau_n) \le x_n]$$

 No vamos a estudiar todos los posibles procesos sino un subconjunto de ellos "sencillos" de analizar

Gestión y Planificación de Redes y Servicios Área de Ingeniería Telemática

Procesos de Markov y proceso de nacimiento puro

Procesos de Markov

 Habría que especificar la dependencia entre todas las variables mediante la función de distribución conjunta

$$P[X(\tau_1) \le x_1, X(\tau_2) \le x_2, ..., X(\tau_n) \le x_n]$$

- En 1907 A. A. Markov define un conjunto de procesos que se han venido a llamar "procesos de Markov" y "cadenas de Markov" (estado discreto)
- Son aquellos que cumplen que:

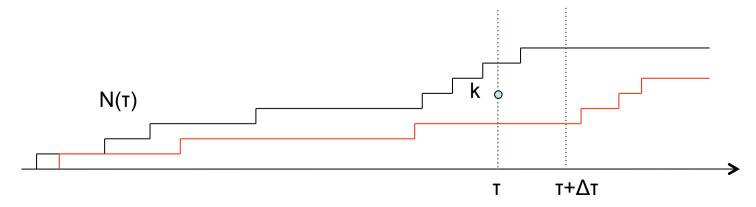
$$P[X(\tau_{n+1}) = x_{n+1} \mid X(\tau_n) = x_n, X(\tau_{n-1}) = x_n, ..., X(\tau_1) \le x_1] = P[X(\tau_{n+1}) = x_{n+1} \mid X(\tau_n) = x_n]$$

$$\tau_1 < \tau_2 < ... < \tau_n < \tau_{n+1}$$

- Es decir, el estado siguiente depende solo del estado anterior y no de toda la historia pasada
- Toda la historia se resume en el último estado observado
- Veamos un caso (...)

Proceso de nacimiento puro

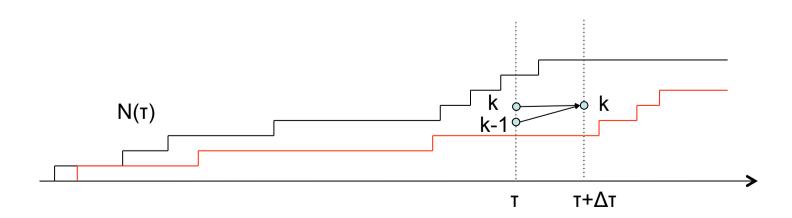
- El estado es el número de clientes en el sistema
- Llegadas (nacimientos) independientes
- Supongamos que con Δt pequeño:
- P[1 llegada en $(\tau, \tau + \Delta \tau)$ | k en el sistema] = $\lambda_k \Delta \tau + o(\Delta \tau)$
- P[0 llegadas en $(\tau, \tau + \Delta \tau)$ | k en el sistema] = 1 $\lambda_k \Delta \tau$ + $o(\Delta \tau)$
- Def: $o(\Delta \tau)$ tiende a 0 "más rápido" que $\Delta \tau$, es decir $l(m_{\Delta \tau}) o(\Delta \tau)/\Delta \tau = 0$
- $P_k(\tau)$: probabilidad de encontrarse en el estado k en el instante τ
- $p_{j,k}(\tau,\tau+\Delta\tau)$: probabilidad de encontrarse en el estado k en instante τ + $\Delta\tau$ dado que en el instante τ se encontraba en el estado j
- $p_{j,k}(T,T+\Delta T) = P[N(T+\Delta T) = k | N(T) = j]$
- $p_{j,k}(\tau,\tau+\Delta\tau) = p_{j,k}(\Delta\tau)$ si el proceso es homogéneo (no cambia su comportamiento con el tiempo)



Gestión y Planif. Redes y Servs. Área de Ingeniería Telemática

Proceso de nacimiento puro

- $p_{j,k}(\tau,\tau+\Delta\tau) = p_{j,k}(\Delta\tau)$ si el proceso es homogéneo (no cambia su comportamiento con el tiempo)
- $P_k(\tau + \Delta \tau) = P_k(\tau) p_{k,k}(\Delta \tau) + P_{k-1}(\tau) p_{k-1,k}(\Delta \tau) =$
- = $P_k(T) (1 \lambda_k \Delta T + O(\Delta T)) + P_{k-1}(T) (\lambda_{k-1} \Delta T + O(\Delta T)) =$
- $= P_k(\tau) \lambda_k P_k(\tau) \Delta \tau + o(\Delta \tau) + \lambda_{k-1} P_{k-1}(\tau) \Delta \tau + o(\Delta \tau)$



Proceso de nacimiento puro

- $P_k(\tau + \Delta \tau) = P_k(\tau) \lambda_k P_k(\tau) \Delta \tau + o(\Delta \tau) + \lambda_{k-1} P_{k-1}(\tau) \Delta \tau + o(\Delta \tau)$
- $P_k(T+\Delta T) P_k(T) = -\lambda_k P_k(T)\Delta T + \lambda_{k-1} P_{k-1}(T)\Delta T + O(\Delta T)$

$$\frac{\mathsf{P}_k(\mathsf{T} + \Delta \mathsf{T}) - \mathsf{P}_k(\mathsf{T})}{\Delta \mathsf{T}} \quad = -\lambda_k \mathsf{P}_k(\mathsf{T}) + \lambda_{k-1} \mathsf{P}_{k-1}(\mathsf{T}) + \frac{\mathsf{O}(\Delta \mathsf{T})}{\Delta \mathsf{T}} \qquad k \ge 1$$

• Si Δτ→0 entonces lo de la izquierda es la derivada y la o(Δτ)/Δτ→0 :

$$dP_k(\tau)/d\tau = -\lambda_k P_k(\tau) + \lambda_{k-1} P_{k-1}(\tau)$$

Con la salvedad de k=0 para el que no existe el estado k-1 :

$$dP_0(\tau)/d\tau = -\lambda_0 P_0(\tau)$$