Tecnologías Wi-Fi

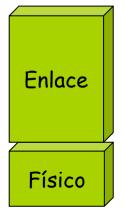
Area de Ingeniería Telemática http://www.tlm.unavarra.es

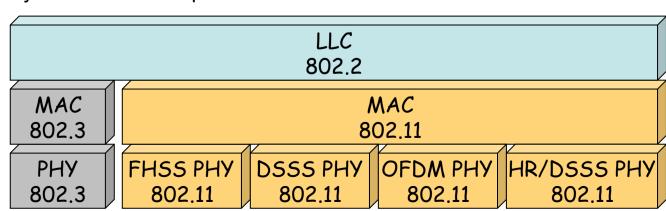
Grado en Ingeniería en Tecnologías de Telecomunicación, 3º

Fundamentos de Tecnologías y Protocolos de Red Área de Ingeniería Telemática

802.11: Nivel físico

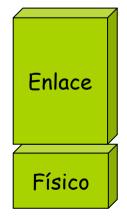
Fund. Tec. Y Proto. de Red Área de Ingeniería Telemática

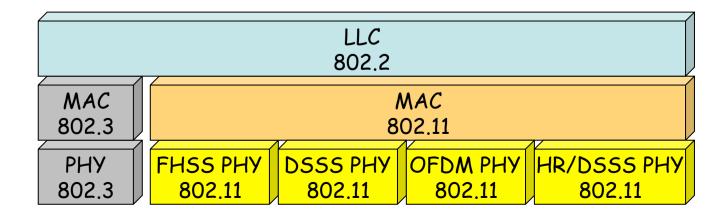

Estándar Wireless LANs


- IEEE 802.11 (1999)
 - LAN basada en medio inalámbrico

 Advancing Technology for Humanity
- Certificación de la Wi-Fi Alliance
 - http://www.wi-fi.org/

- Hoy más de 350 compañías miembro
- Hay diferentes niveles físicos posibles
- MAC 802.11 es común a todos ellos
- MAC intenta ofrecer un acceso justo al medio
- El nivel físico está dividido en dos subniveles:
 - PLCP: Physical Layer Convergence Procedure
 - PMD: Physical Medium Dependent

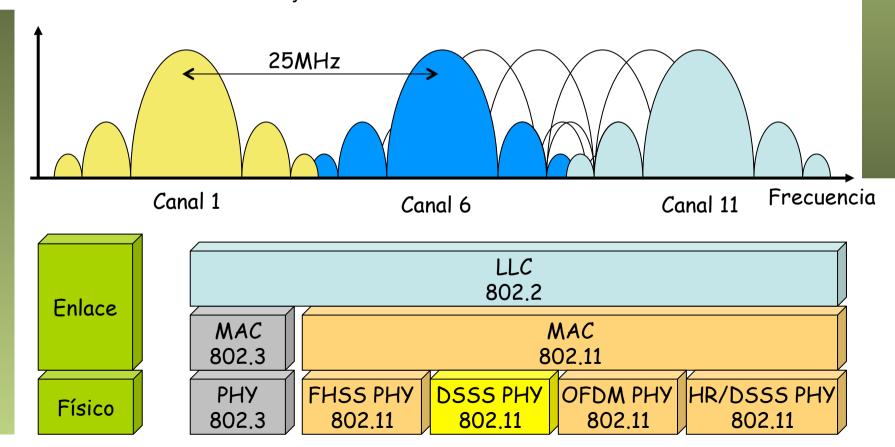


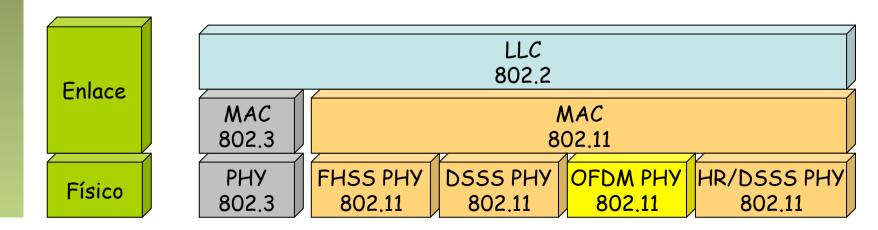


Nivel físico

- Emplean bandas que no requieren licencia
 - 2.4 2.5 GHz es la C-Band Industrial, Scientific and Medical (ISM) (Por ejemplo los hornos microondas, algunos teléfonos inalámbricos, etc)
 - Unlicensed National Information Infrastructure bands (en torno a 5GHz)
- Velocidades alcanzables depende de distancia, en interiores aprox.:
 - (802.11g)
 - (según fabricante)
 - 100m a 1Mbps
 - 50m a 11Mbps
 - 30m a 36Mbps
 - 20m a 54Mbps

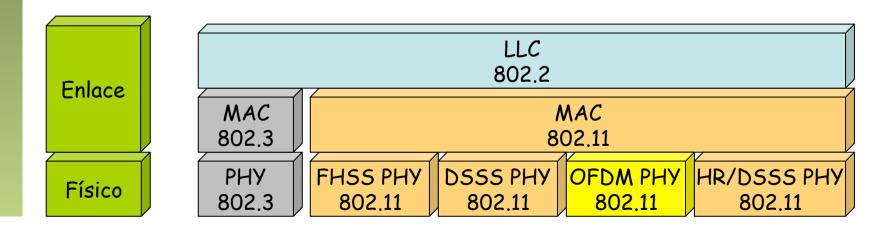
Estándar	Velocidad Má×	Frecuencia
802.11	2 Mbps	2.4 GHz
802.11a	54 Mbps	5 GHz
802.11b	11 Mbps	2.4 GHz
802.11g	54 Mbps	2.4 GHz
802.11n	300-600 Mbps	2.4 y/o 5 <i>G</i> Hz




802.11b

- Banda de 2.4GHz
- HR/DSSS = High Rate Direct-Sequence Spread Spectrum (hasta 11Mbps)
- En EEUU 11 canales (14 en Japón, 13 en Europa-ETSI)
- BW aprox. de un canal menor de 25MHz (atenuación mayor de 30dB)
- Separación entre canales de 5MHz
- Canales 1-6-11 tienen ya escasa interferencia

802.11a

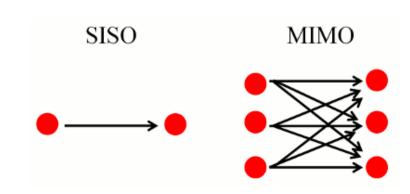

- Banda de 5GHz
- OFDM = Orthogonal Frequency Division Multiplexing
- En torno a 23 canales (unos 12 que no se solapan)
- Añade a las velocidades de 802.11b: 6, 9, 12, 18, 24, 36, 48 y 54 Mbps

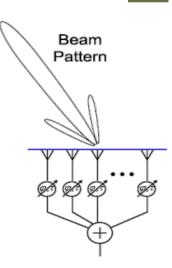
802.11g

- 2.4GHz compatible con 802.11b
- Añade OFDM con velocidades como 802.11a (hasta 54Mbps)
- Mismos canales que 802.11b
- Lo mejor es seleccionar uno de entre 1-6-11 que comparta con menor número de otras WLANs

- La modificación es grande
- Al incorporarla (en 2009) se duplicó el tamaño del estándar
- 802.11-2007 tenía unas 1200 páginas
- 802.11-2012 tiene 2793
- Con muchas características opcionales
- Eso quiere decir que seguramente muchos equipos no implementen todas
- Además la electrónica ha tenido que ir añadiéndolas

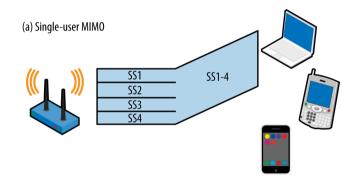
IEEE STANDARDS ASSOCIATION

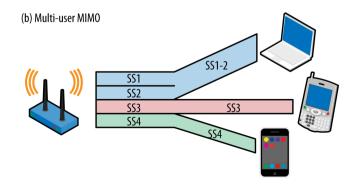

IEEE Standard for Information technology— Telecommunications and information exchange between systems Local and metropolitan area networks— Specific requirements


Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

- Tanto en 2.4 GHz como 5 GHz
- Compatible con 802.11a/b/g
- Canales de diferente BW (20MHz, 40 MHz)
- En 2.4GHz hasta 3 canales que no se solapan (solo uno de 40MHz)
- En 5GHz hasta 21 (unos 9 si son de 40MHz)
- MIMO
 - Multiple Input Multiple Output
 - Hasta 4 *streams* espaciales
 - No confundir con *antenna diversity*, es decir, tener múltiples antenas y emplear la que reciba mayor potencia (esto ya en equipos 802.11a/b/g)
- Permite *beamforming* (baja compatibilidad entre fabricantes)
- No solo trae mejoras en el nivel físico sino también en MAC

- Hay 10 páginas en 802.11-2012 con tablas sobre las velocidades posibles según el ancho de banda, la codificación, el nivel de corrección de errores...
- En canal de 40 MHz con 4 streams espaciales, 64-QAM y codificación 5/6 podrían alcanzarse los 540 Mbps (esto es lo máximo)
- Hoy en día lo normal es hasta 3 streams con lo que máximos de 450Mbps


Table 20-44—MCS parameters for optional 40 MHz, N_{SS} = 4, UEQM


MCS Index	Modulation										Data rate (Mb/s)		
	Stream 1	Stream 2	Stream 3	Stream 4	R	N _{BPSC}	N _{SD}	N _{SP}	N _{CBPS}	N _{DBPS}	N _{ES}	800 ns GI	400 ns GI
53	16- QAM	QPSK	QPSK	QPSK	1/2	10	108	6	1080	540	1	135	150
54	16- QAM	16- QAM	QPSK	QPSK	1/2	12	108	6	1296	648	1	162	180
55	16- QAM	16- QAM	16- QAM	QPSK	1/2	14	108	6	1512	756	1	189	210
56	64- QAM	QPSK	QPSK	QPSK	1/2	12	108	6	1296	648	1	162	180
57	64-	16-	OPSK	ODCK	1/2	14	108	6	1512	756	1	180	210

- Estándar IEEE de 2013, solo 802.11ac son 425 páginas
- En 5 GHz, canales de 20, 40, 80 ó 160 MHz
- 2 canales de 80 MHz o 1 canal de 160 MHz (no caben en la banda de 2.4 GHz)
- Se puede enviar hasta a 4 receptores simultaneamente (Multi-User MIMO o MU-MIMO)
- Los dispositivos suelen a la vez soportar 802.11n

- Hay 16 páginas en 802.11ac con tablas sobre las velocidades posibles
- En canal de 160 MHz con 8 streams espaciales, 256-QAM y codificación 5/6 podrían alcanzarse los 6.9 Gbps (esto es lo máximo)
- Hoy en día lo normal es hasta canal de 80 MHz con 3 streams y eso da hasta 1.3Gbps compartidos
- En canal de 80 MHz se podría esperar hasta 500Mbps a una estación
- En general no hay cambios al nivel MAC

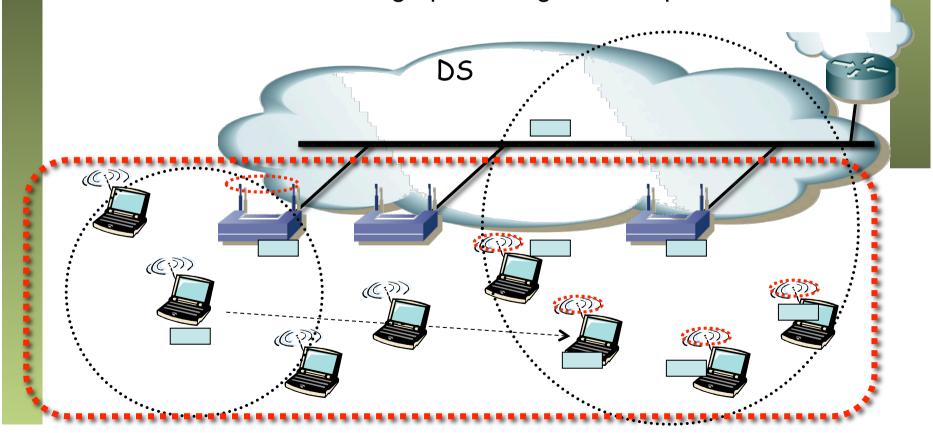
Technology	20 MHz ^[a]	40 MHz	80 MHz	160 MHz
802.11b	11 Mbps			
802.11a/g	54 Mbps			
802.11n (1 SS)	72 Mbps	150 Mbps		
802.11ac (1 SS)	87 Mbps	200 Mbps	433 Mbps	867 Mbps
802.11n (2 SS)	144 Mbps	300 Mbps		
802.11ac (2 SS)	173 Mbps	400 Mbps	867 Mbps	1.7 Gbps
802.11n (3 SS)	216 Mbps	450 Mbps		
802.11ac (3 SS)	289 Mbps	600 Mbps	1.3 Gbps	2.3 Gbps ^[b]
802.11n (4 SS) ^[c]	289 Mbps	600 Mbps		
802.11ac (4 SS)	347 Mbps	800 Mbps	1.7 Gbps	3.5 Gbps
802.11ac (8 SS)	693 Mbps	1.6 Gbps	3.4 Gbps	6.9 Gbps

802.11ad

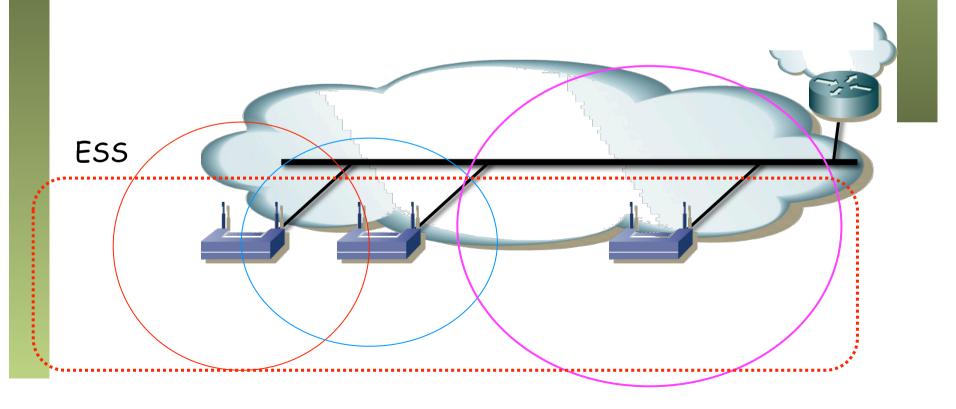
- Estándar IEEE de 2012, solo la modificación son 628 páginas
- Inicialmente WiGig
- Existía una WiGig Alliance que se fusionó con la Wi-Fi Alliance en 2013
- Banda de 60 GHz (BW de 2GHz)
- Tasas de transmisión hasta cerca de 7 Gbps
- Muy baja latencia
- Muy cortas distancias (visión directa)
- Incluye nuevo nivel físico y MAC

Fundamentos de Tecnologías y Protocolos de Red Área de Ingeniería Telemática

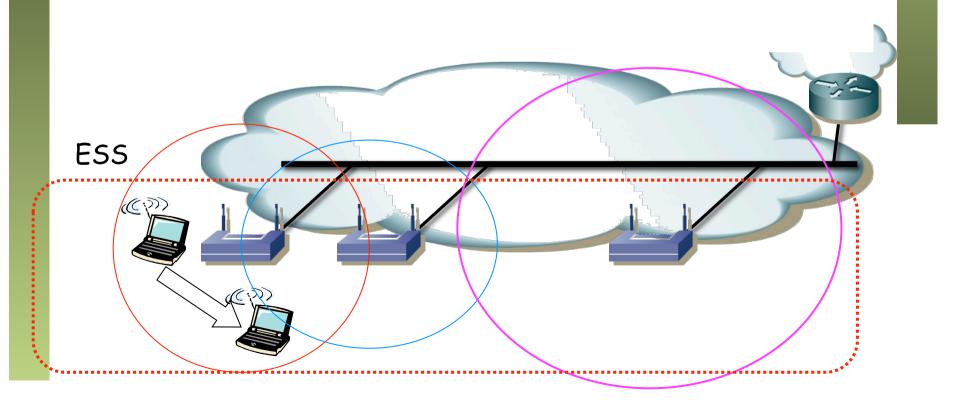
802.11: Nivel de enlace


Fundamentos de Tecnologías y Protocolos de Red Área de Ingeniería Telemática

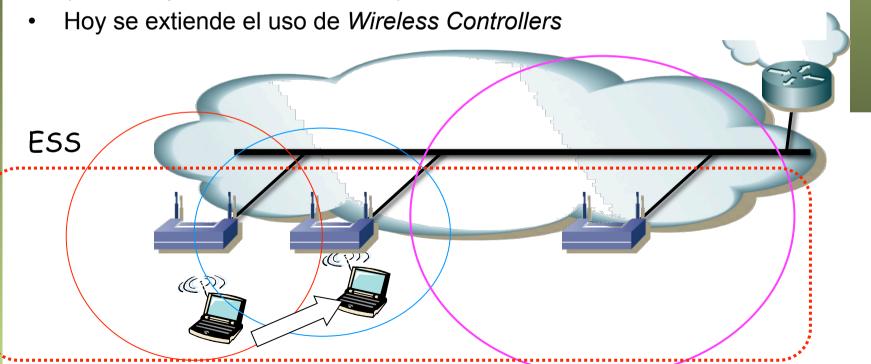
802.11: Service Sets y movilidad


Topologías

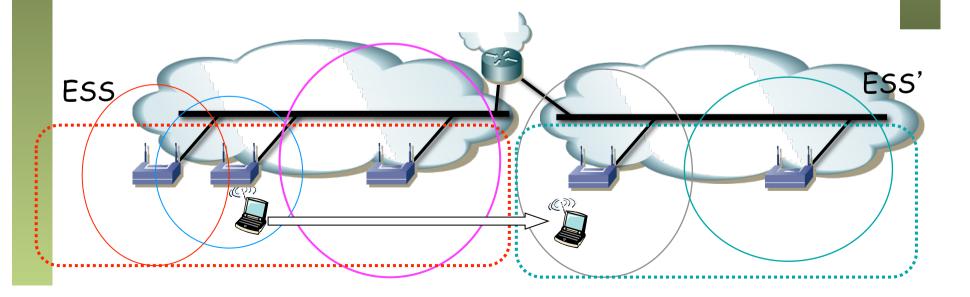
- Topologías:
 - Independent Basic Service Sets (IBSSs) o Ad Hoc BSS
 - Basic Service Sets (BSSs) o Infraestructure BSS
 - Extended Service Sets (ESSs)
- Un Service Set es una agrupación lógica de dispositivos


- 802.11 ofrece movilidad en el subnivel MAC
- Transparente para los niveles superiores (para LLC parece una LAN cableada)
- Todo el contenido de un ESS es la misma LAN
- El ESS sabe hacer llegar una trama a donde esté el destino

Sin transición


 Estaciones se mueven dentro del área de cobertura de un mismo AP

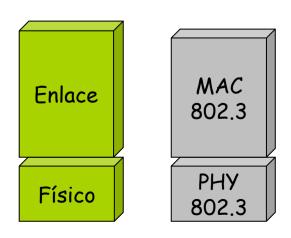
Transición BSS


- Estaciones se mueven dentro de un mismo ESS cambiando de AP
- Reasociación, normalmente al detectar otro AP con más potencia
- Requiere cooperación entre los APs para conocer a cuál se encuentra asociado el usuario
- Durante bastante tiempo esa cooperación no estuvo estandarizada (802.11F pero retirado en 2006)

Transición ESS

- De un ESS a otro distinto
- No soportado por 802.11
- Comunicación de capas superiores se ve interrumpida
- Se creará una nueva asociación y nueva configuración de red
- Para TCP/IP existe la posibilidad de Mobile IP

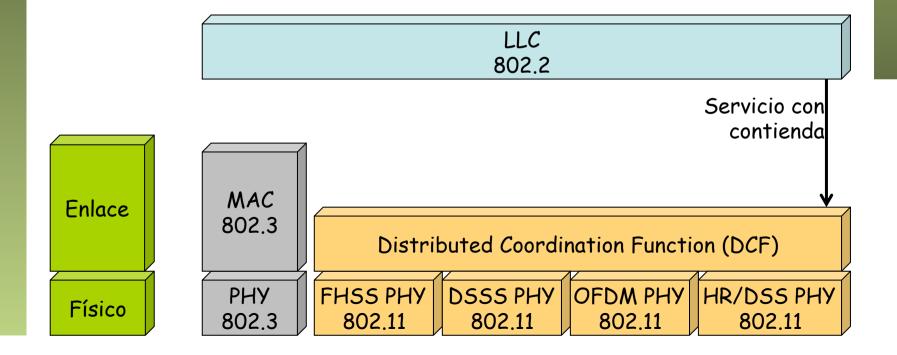
Fundamentos de Tecnologías y Protocolos de Red Área de Ingeniería Telemática


802.11: MAC tradicional

Subnivel MAC

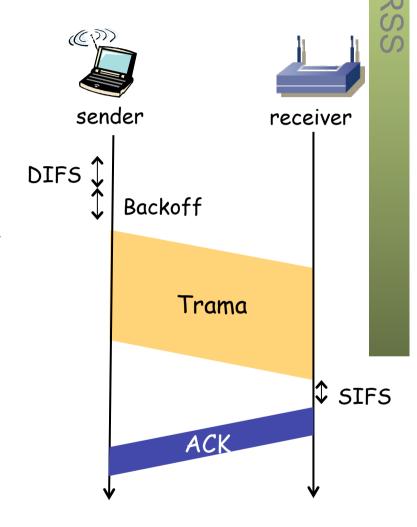
Conveniente un cierto conocimiento en detalle:

- Para comprender las diferentes soluciones para hacer la red segura
- Para solucionar problemas de red (packet sniffing)
- Para poder optimizar parámetros de la misma
- Para ajustar parámetros de los drivers
- Para comprender las mejoras que se van ofreciendo en nuevos productos y estándares



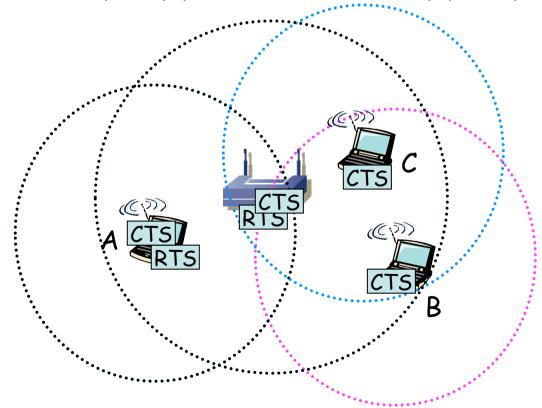
Fund. Tec. Y Proto. de Red Área de Ingeniería Telemática

Subnivel MAC

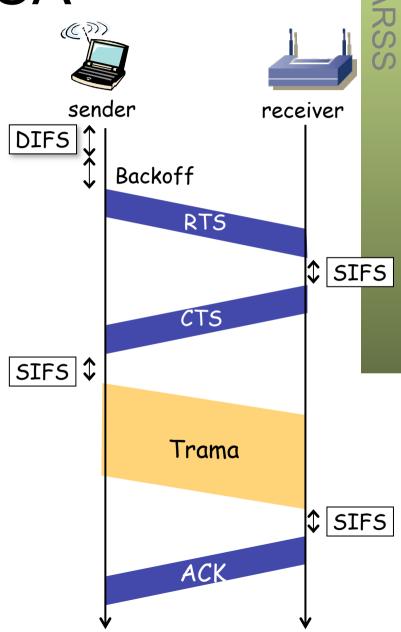

- IEEE 802.3 (Ethernet) usa CSMA/CD
- IEEE 802.11 (Wi-Fi):
 - DCF = Distributed Coordination Function
 - CSMA/CA = Carrier Sense Multiple Access / Collision Avoidance
 - Mandatory
 - Modo infraestructura o ad-hoc
 - Emplea confirmaciones positivas (ACKs)

CSMA/CA

- Carrier Sense: Si se detecta el medio inactivo durante el tiempo suficiente (DIFS) la estación puede enviar una trama
- Random Backoff: Si durante el DIFS el medio está activo, espera a que esté libre, espera un DIFS y genera un valor al alzar de tiempo que espera (entre CW_{min} y CW) (collision avoidance)
- Si el medio sigue libre envía la trama
- Destinatario espera un tiempo (SIFS, con SIFS<DIFS) y envía una confirmación
- Si no recibe ACK duplica CW, genera un nuevo backoff aleatorio, espera y retransmite


DIFS = DCF Interframe Space SIFS = Short Interframe Space

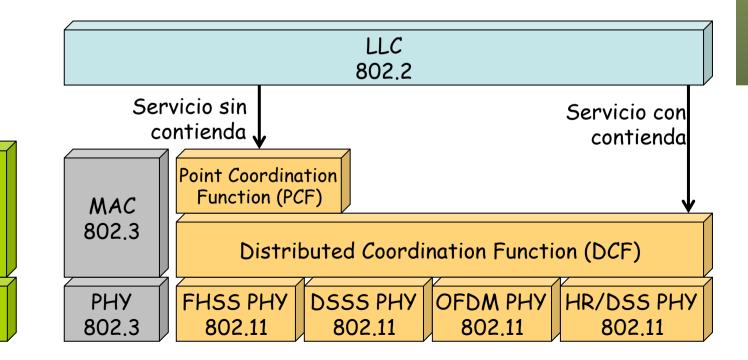
Terminal oculto


Queremos evitar las colisiones

- Reservar previamente el canal con una trama corta (menor probabilidad de colisión)
- Request-To-Send (RTS) (puede colisionar) (...)
- Clear-To-Send (CTS) (nadie más transmite) (.....)

CSMA/CA

- DIFS > SIFS
- RTS/CTS consume capacidad
- Utilizado en entornos con frecuente contienda
- Generalmente solo para tramas grandes
- Throughput obtenible limitado
- Unos 4-6Mbps en 802.11b a 11Mbps
- Unos 30Mbps en 802.11g y 802.11a a 54Mbps


Enlace

Físico

Subnivel MAC

- IEEE 802.3 (Ethernet) usa CSMA/CD
- IEEE 802.11 (Wi-Fi):
 - PCF = Point Coordination Function
 - Solo para modo infraestructura
 - Sin contienda (hay un coordinador)
 - · Poco implementada

Fundamentos de Tecnologías y Protocolos de Red Área de Ingeniería Telemática

802.11: MACs nuevos

Enlace

Físico

Subnivel MAC

- IEEE 802.3 (Ethernet) usa CSMA/CD
- IEEE 802.11 (Wi-Fi):
 - HCF = Hybrid Coordination Function
 - QoS sin los requisitos rigurosos de PCF
 - Obligatorio para QoS STAs
 - 802.11e (parte de 802.11-2007)

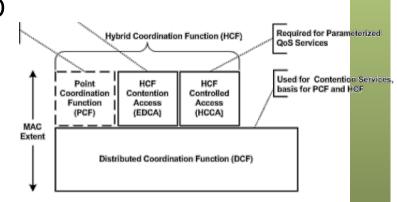
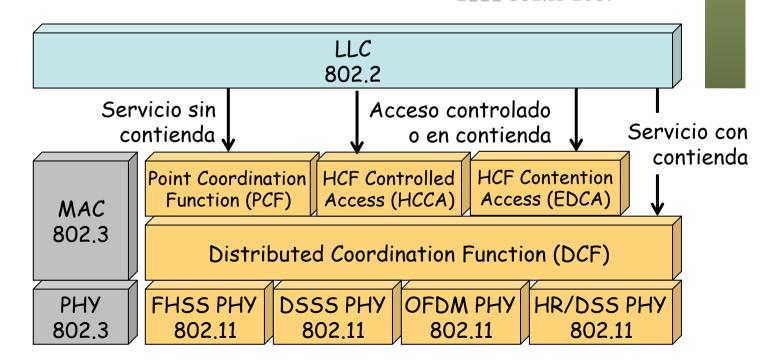
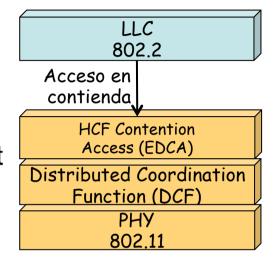



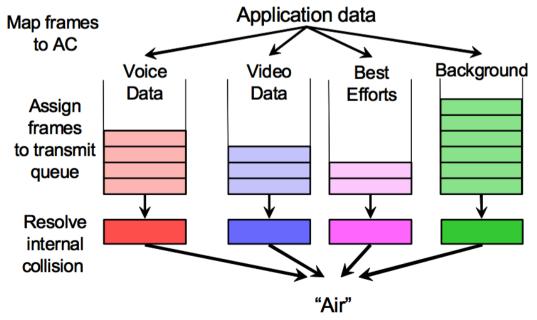
Figure 9-1—MAC architecture IFFF 802.11-2007


HCF

- Debe ser implementada en todas las QoS STAs
- Dos métodos de acceso posibles:
 - En contienda: Enhanced Distributed Channel Access (EDCA)
 - Controlado: HCF Controlled Channel Access (HCCA)
- WMM (...)

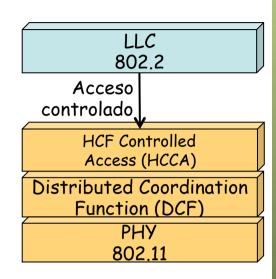
WMM®

- Wi-Fi Multimedia™ (Wi-Fi Alliance)
- Un subconjunto (profile) de 802.11e
- Emplea la EDCA
- 4 Access Categories (ACs): voz, vídeo, best effort y background (no necesariamente)

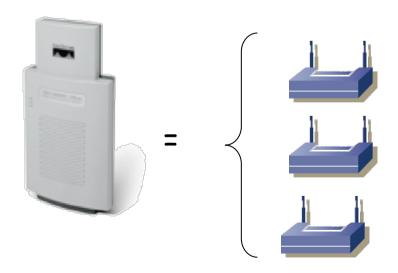

Access Category	Description	
WMM Voice Priority	Highest priority	7, 6
	Allows multiple concurrent VoIP calls, with low latency and toll voice quality	
WMM Video Priority	Prioritize video traffic above other data traffic	5, 4
	One 802.11g or 802.11a channel can support 3-4 SDTV streams or 1 HDTV streams	
WMM Best Effort Priority	Traffic from legacy devices, or traffic from applications or devices that lack QoS capabilities	0, 3
	Traffic less sensitive to latency, but affected by long delays, such as Internet surfing	
WMM Background Priority	Low priority traffic (file downloads, print jobs) that does not have strict latency and throughput requirements	2, 1

http://www.wi-fi.org/files/wp_1_WMM%20QoS%20In%20Wi-Fi_9-1-04.pdf

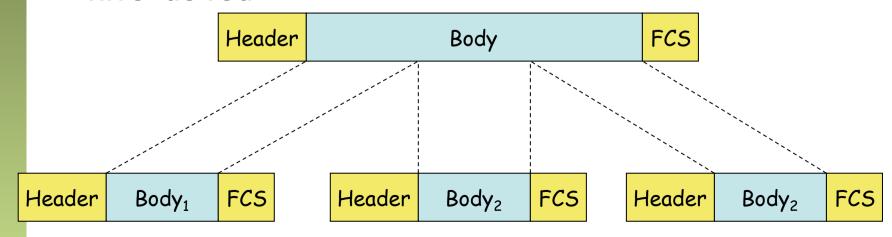
WMM


- Las aplicaciones asignan cada paquete a una AC
- Se añaden a una de las cuatro colas independientes
- El algoritmo para determinar de qué AC se transmite o qué cliente inalámbrico transmite es probabilístico
- Para ello se emplean diferentes valores de IFS y de CW según la AC (menores para mayor prioridad)
- Cuando una AC logra una oportunidad de transmisión, el tiempo que tiene reservado depende de la clase y de la tasa de transmisión física

Scheduled Access


- Wi-Fi Scheduled Multimedia (WSM)
- Opcional en la certificación WMM
- Similar a la PCF
- Permite que las aplicaciones reserven recursos en base a las características de su tráfico
- Para ello envían solicitudes al AP
- Se llama el Hybrid Coordinator (HC)
- Emplea la HCCA
- Un planificador centralizado haciendo polling
- Logra reducir la latencia en la red

Multi-BSS APs


- Circuitos integrados para 802.11 originalmente soportaba un solo BSS
- Hoy en día son capaces de gestionar más de uno, con diferente SSID
- Virtual Access Points

Fragmentación

- Servicio ofrecido en el nivel de enlace
- Divide trama grande en más pequeñas
- Cada fragmento es confirmado por separado
- El transmisor no libera el medio hasta enviar todos los fragmentos
- Aumenta la fiabilidad en la transmisión
- Solo se aplica a tramas unicast
- Atención a las diferencias con la fragmentación en el nivel de red

