Herramienta: Simulación

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Grupo de Redes, Sistemas y Servicios Telemáticos

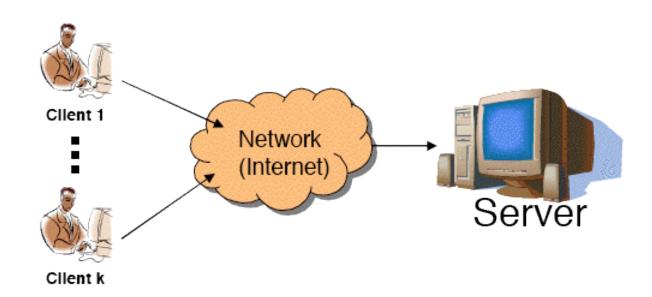
Introducción

¿ Cómo evaluar un sistema?

- Medirlo (experimentos)
 - ¿Y si no existe?
 - ¿Y si es muy caro o costoso hacer cambios en él? (para preguntas "what if")
- Análisis matemático
 - Solo para sistemas simples
 - Sistemas reales son complejos
- Simulación
 - Reconstruir el comportamiento del sistema en un programa
- Emulación
 - Reproducir el comportamiento mediante un programa

Simulación

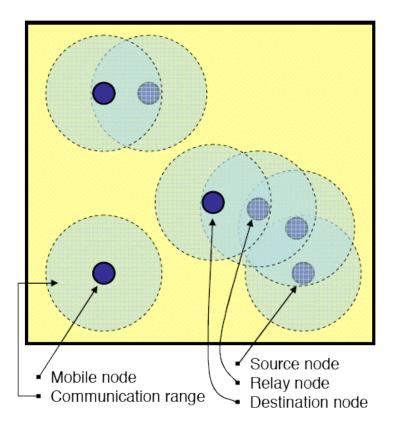
- Imitar el funcionamiento de un sistema real con el tiempo
- Esto no es nuevo...
- Trataremos simulaciones informáticas



- Se necesita un modelo del sistema real
- Se genera una historia artificial de sucesos en el sistema y sus repercusiones
- Se obtienen medidas de prestaciones
- Si el modelo es muy simple se puede resolver matemáticamente
- Modelos realistas son demasiado complejos para una solución analítica

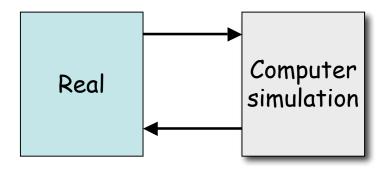
Ejemplo

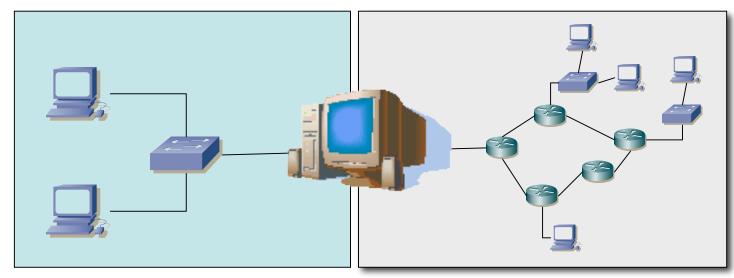
- Clientes solicitan un servicio a través de una red
 - Clientes: usuario y navegador web
 - Servidor: servidor web
 - Servicio: página web
 - Red: Internet
- Analizar el rendimiento del servidor y de la red



Ejemplo

- Mobile Ad-hoc NETwork (MANET)
- Dos nodos se pueden comunicar si están dentro del alcance
- Los nodos pueden reenviar tráfico de otros
- Se mueven
- Modelar su movimiento
- Modelar el tráfico
- Resultados prestaciones


Cuándo no es apropiada


- Si el sentido común nos da la respuesta
- Si el problema se puede resolver analíticamente
- Si es más sencillo realizar experimentos
- Si el coste (€) del estudio de simulación es mayor que el ahorro posible con el conocimiento que se obtiene
- Si el sistema es demasiado complejo
- Si creemos que es la respuesta a cualquier problema.

Simuation & Emulation

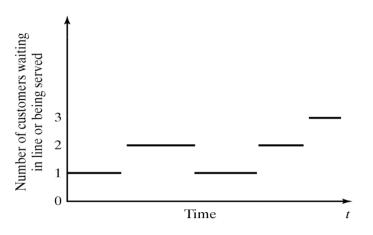
- La emulación obtiene eventos del sistema real
- Devuelve eventos tras una simulación de lo que les ha sucedido
- Esos eventos de salida deben producirse en el instante real que les corresponda

Componentes

- Sistema (system)
 - Grupo de objetos con una interacción o interdependencia orientada hacia un propósito
- Componentes
 - Entidad (entity)
 - Un objeto de interés en el sistema
 - Atributo (attribute)
 - · Propiedad de una entidad
 - Actividad (activity)
 - Un periodo de tiempo de una longitud especificada
- Ejemplo: Sucursal de un banco
 - Los clientes podrían ser entidades
 - Su saldo en cuenta sería un atributo
 - Hacer depósitos una actividad

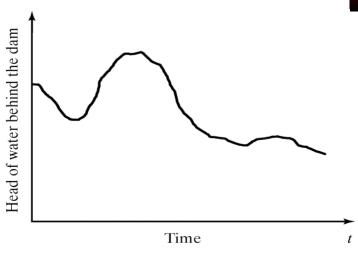
Estado del sistema

- Grupo de variables necesarias para describir el sistema en un momento cualquiera, en relación con los objetivos del estudio
- Ejemplo: banco
 - Número de cajeros ocupados
 - Número de clientes esperando en cola
 - Instante en que llegará el siguiente cliente
- Evento: suceso instantáneo que puede cambiar el estado del sistema (endógenos u exógenos)
- Ejemplo:
 - Llegada de un nuevo cliente (exógeno)
 - Cliente termina de ser atendido (endógeno)



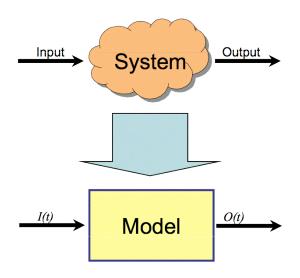
Tipos de sistemas

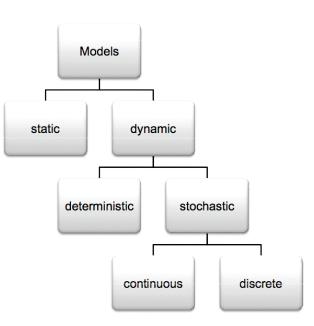
- Discretos o continuos
- Difícil ser solo de un tipo pero normalmente suelen predominar los cambios de uno de los dos tipos


Sistema discreto

- Las variables de estado cambian solo en un conjunto discreto de puntos en el tiempo
- Ejemplo: banco con llegadas y salidas

Sistema continuo


- Las variables de estado cambian de forma continua con el tiempo
- Ejemplo: nivel de agua en un pantano



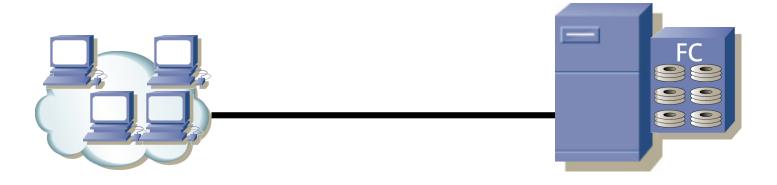
Modelo del sistema

- Representación de un sistema para estudiarlo
- Simplifica el sistema
- Considera solo los aspectos que afectan al problema en estudio
- Debe ser lo suficientemente detallado para poderse obtener conclusiones que apliquen al sistema real

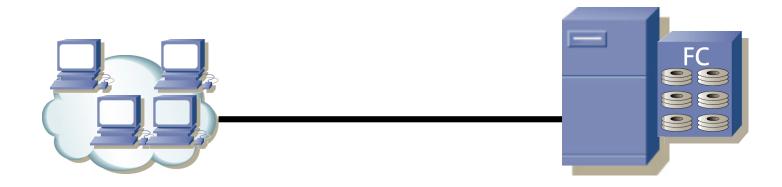
- Tipos:
 - Matemático/Físico
 - Estático (Monte Carlo)/<u>Dinámico</u>
 - Determinista/Estocástico
 - <u>Discreto</u>/Continuo
- Nos interesan los estocásicos, dinámicos y discretos.

Ejemplos de simulación

Simulation table

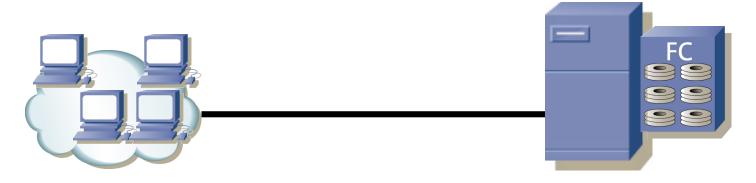

- Método para seguir el estado del sistema con el tiempo
- Metodología
 - 1. Determinar las características de los *inputs* a la simulación (normalmente distribuciones de probabilidad)
 - 2. Construir una tabla de simulación
 - 3. Para cada iteración *i* generar una valor de cada uno de los *p inputs* y evaluar la función calculando la respuesta *y*_i que normalmente depende de los *inputs* y de respuestas previas
- Tabla:
 - $p inputs x_{ij}, j = 1,2,...,p$
 - Una respuesta *y_i*
 - Para cada iteración i

Repetitions _	ions Inputs						Response
i	× _{i1}	x _{i2}		\boldsymbol{x}_{ij}	•••	\boldsymbol{x}_{ip}	
1							
2							
3							
n							



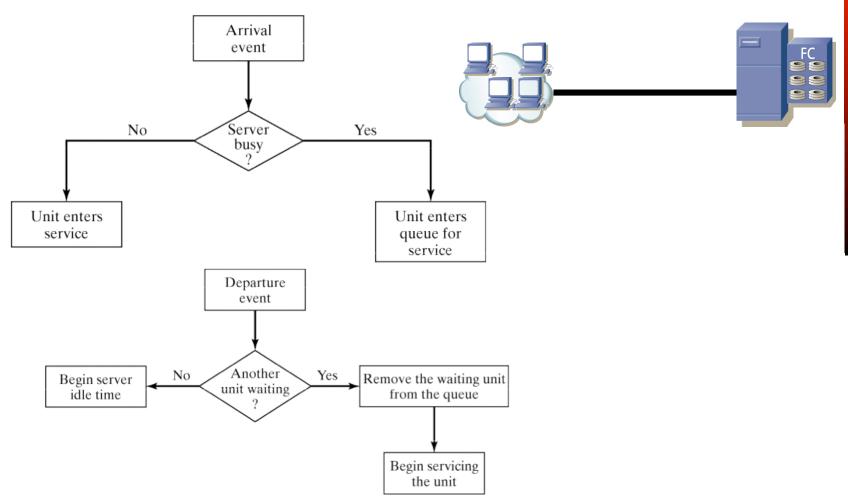
- Un servidor web single-threaded
- Recibe peticiones de ficheros que debe obtener del disco duro
- El S.O. atiende las peticiones en serie, completando una antes de atender la siguiente
- Si el disco está ocupado el hilo del servidor web se bloqueará a la espera de que el disco finalice
- El disco es capaz de servir datos a 80 Mbps (aprox. 10MBps)

- Número infinito de clientes (las llegadas no cambian porque estemos atendiendo a varios)
- Entre cada par de peticiones consecutivas pasa un tiempo aleatorio (uniforme) entre 10 y 90 milisegundos
 - Media 50 mseg ⇒ 20 peticiones/seg
- Independientes
- Los ficheros que se solicitan son de 100xN KBytes donde N está entre
 1 y 5 (igual probabilidad, independientes)
 - Media 300 KBytes ≈ 2.4 Mbits/petición
- En media se solicitan 48 Mbps
- Caso peor: 500 KBytes a 80 Mbps ⇒ 51 mseg > 10 mseg
- Se formará una cola de peticiones en el servidor

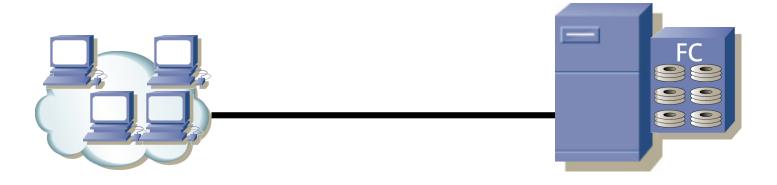


Más hipótesis:

- Ignoramos los efectos de la red
- Servidor no es multi-hilo
- El disco no atiende a varias peticiones a la vez
- No contamos tiempos de búsqueda en el disco
- Puede mantener a la espera tantas peticiones como necesite


Preguntas:

- ¿ Cuántas peticiones tienen que esperar a que se atienda otra ?
- ¿ Cuánto tiene que esperar un usuario a que empiecen a servirle el fichero que ha solicitado ? ¿ Caso peor ? ¿ Media ? ¿ El 95% ?
- ¿ Cuánto podría aumentar la carga y seguir "funcionando" el sistema ?
- ¿ Qué velocidad de discos se necesita para una "calidad" ojetivo ?



 Pregunta simple: ¿ Cuánto tiene que esperar un usuario a que empiecen a servirle el fichero que ha solicitado?

- ¿ Es realista el modelo de usuario ?
 - ¿Uniforme el tiempo entre llegadas?
 - ¿Y peticiones a ráfagas? (html + imágenes)
 - ¿Ficheros tamaños uniformes?
 - ¿A partir de cuántos usuarios es razonable suponer una población "infinita"?
- ¿ De verdad puedo ignorar la red ?
 - ¡ Es un flujo en media de 48 Mbps y con picos de 240 Mbps!
 - TCP: RTT, pérdidas, control de flujo

Simulación de eventos discretos

Simulación de eventos discretos

- Modelado con el tiempo de un sistema en el que todos los cambios de estado se producen en un conjunto discreto de puntos en el tiempo
- Empleo de métodos numéricos
 - En vez de métodos analíticos
 - El modelo se "corre" en vez de se "resuelve"
- Se lleva a cabo produciendo una secuencia de snapshots del sistema con el tiempo
- El snapshot en un instante t incluye
 - El estado del sistema en el instante t
 - Una lista de las actividades en progreso y cuándo terminarán
 - El estado de todas las entidades
 - Los valores de todos los contadores estadísticos



Future (pending) Events List (FEL)

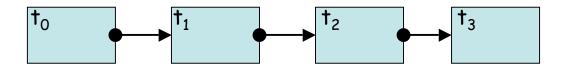
- Es el mecanismo para hacer avanzar la simulación
- La FEL contiene los eventos planificados para este instante o posteriores aún sin procesar
- Cada evento contiene el instante de tiempo en que sucede
- Ordenados por instante de tiempo de menor a mayor
- Garantiza que los eventos tienen lugar en orden cronológico

Gestión de actividades con una FEL

- La duración se conoce al comenzar (determinista o aleatoria)
- En algunos entornos existe la posibilidad de cancelar
- Al comenzar la actividad se introduce un evento de finalización de la actividad en la FEL
- Ejemplo: Nueva llegada

$$CLOCK = t < t_0$$

$$t_0 \le t_1 \le t_2 \le t_3$$


Información fundamental a definir

- ¿Efectos de cada tipo de evento?
 - Cambios de estado
 - Cambios de atributos de entidades
- ¿Cómo se definen las actividades?
 - Deterministas, probabilísticas, ecuaciones
 - Qué tipo de evento marca su pricipio/final
 - Su comienzo es condicional al estado
- ¿Cómo comienza la simulación?
 - Primeros eventos
- ¿Cuándo finaliza la simulación?

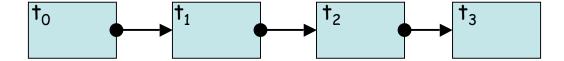
Avance de la simulación

- Snapshots del sistema con el tiempo
- Snapshot incluye el estado del sistema y la FEL
- Esa FEL contiene las actividades en progreso y cuándo finalizan
- CLOCK = t = instante actual en la simulación
- Evento en t₀ = Evento inminente
- Se actualiza CLOCK = t₀
- Se retira el evento inminente de la FEL
- Se "ejecuta" el evento
- Eso crea un nuevo snapshot del sistema

$$CLOCK = t < t_0$$

$$t_0 \le t_1 \le t_2 \le t_3$$

Event-scheduling/Time-advance

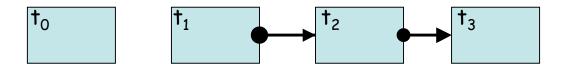

Mientras queden eventos en la FEL

Retirar el primero (evento inminente)

Avanzar la variable de CLOCK hasta el instante del evento

Procesar el evento: puede modificar el estado del sistema e introducir otros eventos futuros en la FEL

Generar eventos futuros (si es necesario) y colocarlos en la FEL manteniéndola ordenada Actualizar los contadores y estadísticos



Ejemplo: Avance con llegadas

- Evento inicial: una llegada
- Se procesa
 - Introduce eventos consecuencia de ella (...)
 - Se introduce un nuevo evento que es la siguiente llegada
 (...)

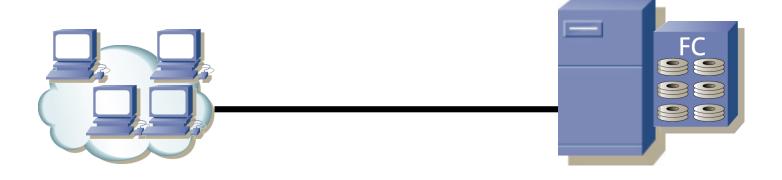
¿ Fin de la simulación ?

- Cuando no queden eventos en la FEL
- En la inicialización introducir un evento futuro de finalización
 - Limita el tiempo simulado
 - No limita el tiempo real
- Detenerla al alcanzar una duración (tiempo real)
- Detenerla al alcanzar unas medidas una cierta precisión.

Gestión de la FEL

- Su longitud cambia durante toda la simulación
- Su gestión eficiente es vital
- Operaciones más frecuentes:
 - Retirar el primero
 - Insertar manteniendo el orden
- Puede soportar el eliminar un evento en concreto.

Simulation Tools


- Librerías de utilidades
- Simuladores programables
- Simuladores controlables (gráfico, script)
- Simuladores de redes (ns2, OMNeT++, SSFNet, Parsec, Qualnet, OPNET, JiST/SWANS ...)

Ejemplo: Servidor Web (again)

- El disco es capaz de servir datos a 10 MBps (80 Mbps)
- Tiempo entre llegadas uniforme [10, 90] milisegundos
 - Media 50 mseg ⇒ 20 peticiones/seg
- Independientes
- Ficheros de [1, 5]x100 KBytes
 - Media 300 KBytes ≈ 2.4 Mbits/petición
- Nueva pregunta:
 - ¿Cuántas peticiones hay esperando?

