Dimensionado en telefonía

Area de Ingeniería Telemática http://www.tlm.unavarra.es

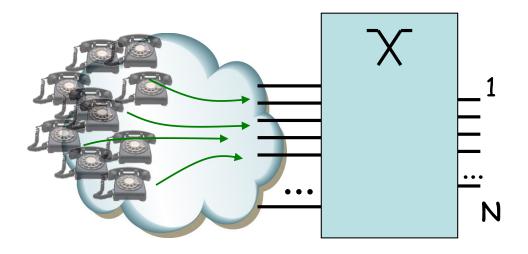
Arquitectura de Redes, Sistemas y Servicios

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

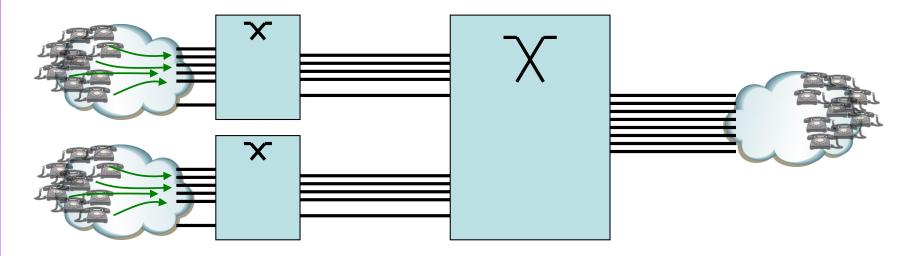
Problema y modelo

Problema tipo a resolver

Conmutador con líneas de entrada y de salida



Extensión:



ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

Área de Ingeniería Telemática

Caracterización estadística

Modelando la carga

Variable aleatoria (V)

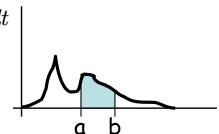
- No tiene un valor sino que describe el resultado aleatorio de un experimento
- Se caracteriza por la descripción de los posibles resultados que puede tomar en términos de probabilidad
- Función de distribución / densidad de probabilidad

Variable discreta

Variable continua

$$p(a) = P[V = a]$$

$$P[a < V < b] = \int_a^b p(t)dt$$



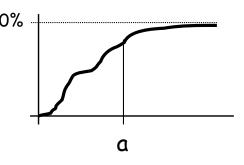
Función acumulada de probabilidad / distribución

Variable discreta

0

 $P[V \leq a] = F(a)$

Variable continua



Modelando la carga

Procesos estocásticos (V)

Una familia de variables aleatorias

$$\left\{X_t:t\in T\right\}$$

- Hablaremos de
 - "Tiempo continuo" cuando T es real, por ejemplo T = [0,∞]
 - "Tiempo discreto" cuando T es numerable, por ejemplo T = {0,1,2...}

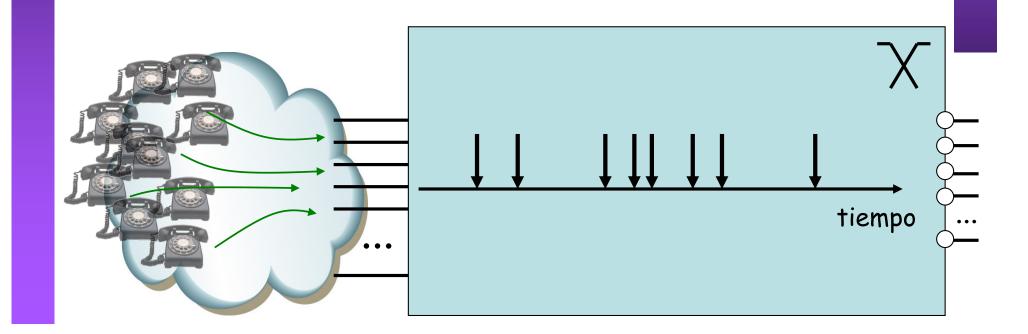
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

Área de Ingeniería Telemática

Proceso de llegadas

Proceso de llegadas

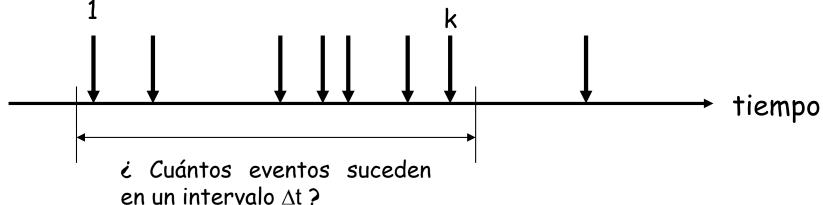
- Hipótesis fundamental en teoría clásica: llegadas independientes
- Tasa media de llegadas de llamadas de una gran población de fuentes (usuarios) independientes: λ



Número de llegadas

- Hipótesis:
 - En un intervalo suficientemente pequeño solo puede producirse una llegada
 - La probabilidad de una llegada en un intervalo suficientemente pequeño es directamente proporcional a la longitud del mismo (probabilidad $\lambda\Delta t$)
 - La probabilidad de una llegada en un intervalo es independiente de lo que suceda en otros intervalos
- Se demuestra que el número de llegadas en un intervalo sigue una distribución de Poisson

$$P_{\lambda\Delta t}[N=k] = \frac{(\lambda\Delta t)^k}{k!}e^{-\lambda\Delta t}$$



Tiempos entre llegadas

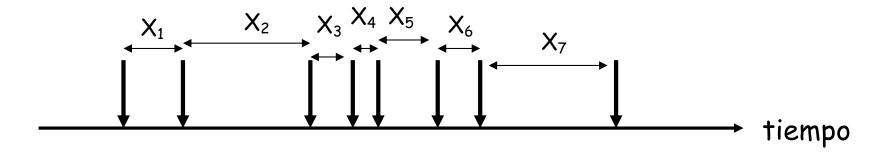
- Se demuestra que: si el número de eventos que ocurren en un intervalo cualquiera sigue una distribución de Poisson, los tiempos entre llegadas de eventos siguen una distribución exponencial
- El tiempo entre llegadas sigue una v.a. exponencial de parámetro λ
- X_i variables aleatorias independientes e idénticamente distribuidas (i.i.d.) ('X')

$$p_X(t) = \lambda e^{-\lambda t} \qquad \text{(t>0)} \qquad P[X < t] = 1 - e^{-\lambda t}$$

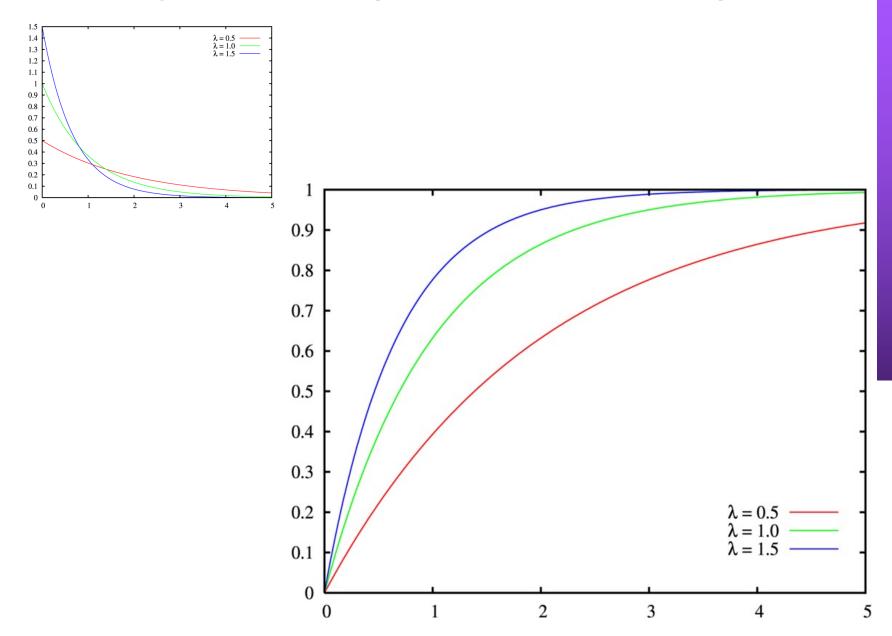
$$P[X < t] = 1 - e^{-\lambda t}$$

• Media:
$$E[X] = \int_{0}^{\infty} t \lambda e^{-\lambda t} = 1/\lambda$$

Tiempo medio entre llegadas $1/\lambda \Rightarrow$ en media λ llegadas por segundo



Ejemplo (exponencial)



Ejemplo (proceso de Poisson)



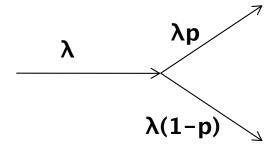
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

Área de Ingeniería Telemática

Propiedades del proceso de Poisson

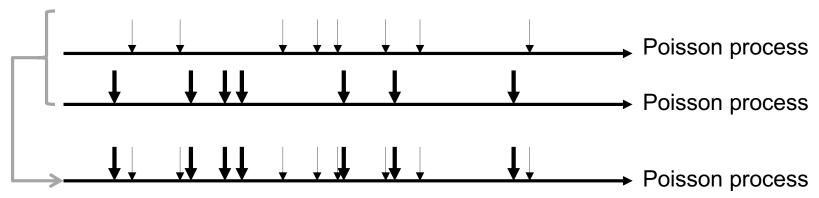
Random splitting

- Proceso de Poisson con tasa λ
- Repartidas las llegadas en dos grupos mediante Bernoulli de parámetro p
- Los procesos resultantes son procesos de Poisson de tasas λp y λ(1-p)



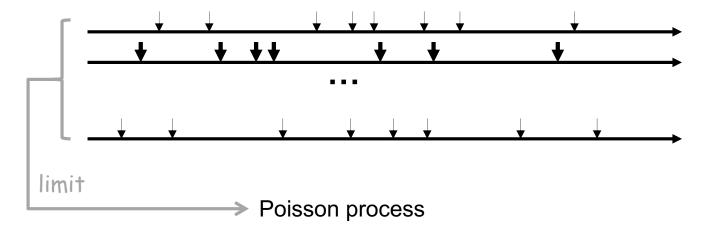
Superposición

• La superposición de dos procesos de Poisson es un proceso de Poisson de tasa la suma de las dos (...)



Superposición

 Para ciertos procesos muy comunes (independientes), la superposición de un gran número de ellos tiende a un proceso de Poisson



- Las peticiones de usuarios individuales es probable que no se puedan modelar con un proceso de Poisson
- El múltiplex de un gran número de usuarios independientes sí

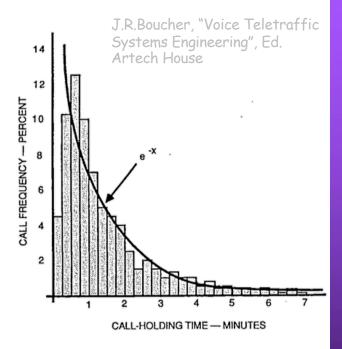
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

Área de Ingeniería Telemática

Duración de las llamadas

Tiempo de ocupación

- Duración de las llamadas
- Lo más simple: tiempo constante
 - Poco realista para llamadas
 - Actividades automáticas: reproducción de mensajes, procesado de señalización, etc.
- Tiempo exponencial
 - Variables aleatorias (continuas) 's_i'
 - i.i.d. ('s')
 - Tiempos menores de la media muy comunes
 - Cada vez menos comunes tiempos mayores que la media
 - Propiedad: el tiempo restante de una llamada es independiente de lo que haya durado hasta ahora
- Duración exponencial: 's' caracterizada por su función de densidad



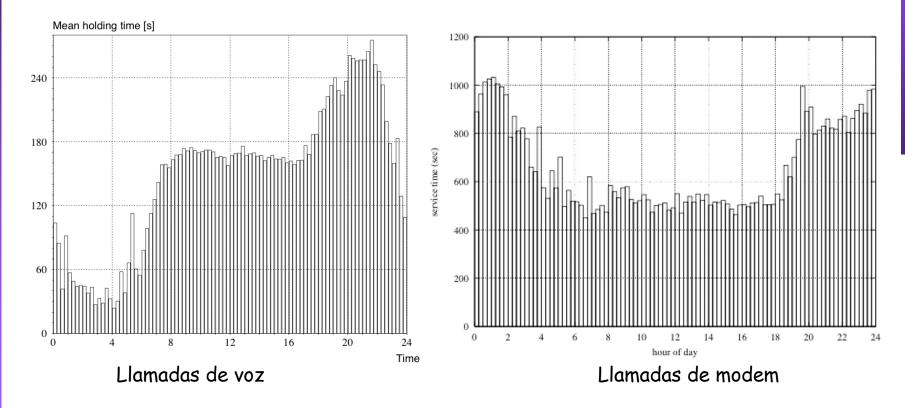
$$p_s(t) = \mu e^{-\mu t} \qquad \text{(t>0)}$$

$$\int_{0}^{\infty} \mu e^{-\mu t} = 1 \qquad \text{es una fdp}$$

$$\bar{s} = E[s] = \frac{1}{\mu}$$

Tiempo de ocupación

 La duración media de las llamadas también tiene cierta variación con la hora del día

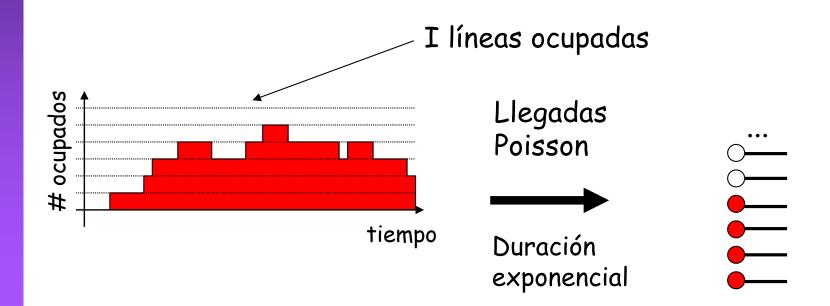


ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Erlang-B

Comportamiento

- Llegadas según proceso de Poisson de tasa λ
- Duración exponencial de media s
- Número de servidores (líneas ocupados) en cada instante de tiempo es aleatorio (I)



Problemas de interés

- ¿ Cuál es la probabilidad de que una llamada encuentre el sistema ocupado ?
- ¿ Cuál es el número de líneas necesarias para una probabilidad objetivo ?
- ¿ Cuál es el tráfico que atraviesa ese sistema y forma la carga del siguiente sistema ?

Probabilidad de bloqueo

- En un sistema con
 - Llegadas Poisson(λ)
 - Duraciones Exp(1/s)
 - Tráfico de entrada A = λ s
 - k servidores
 - Las llamadas que llegan al sistema bloqueado se pierden
 - Probabilidad de bloqueo: ¿Cuál es P[I=k]? (...)
- P[I=k] = B(a,k)
- B(α,k) es conocida como función B de Erlang (o ErlangB)
- Válida con cualquier distribución de tiempo de servicio (i.i.d.)
- Tablas: http://www.itu.int/itudoc/itud/dept/psp/ssb/planitu/plandoc/erlangt-es.html

B de Erlang

Fórmula:

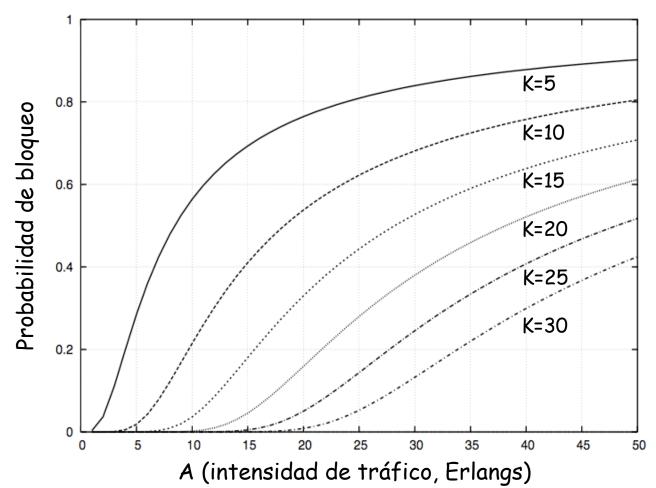
rmula:
$$B(A,k) = \frac{\frac{A^k}{k!}}{\sum_{i=0}^k A^i / i!}$$

Cálculo recursivo:

$$B(A,0) = 1$$

$$A \cdot B(A)$$

$$B(A,j) = \frac{A \cdot B(A,j-1)}{A \cdot B(A,j-1) + j}$$



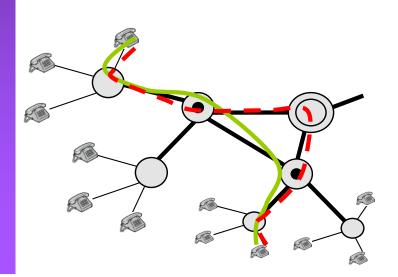
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

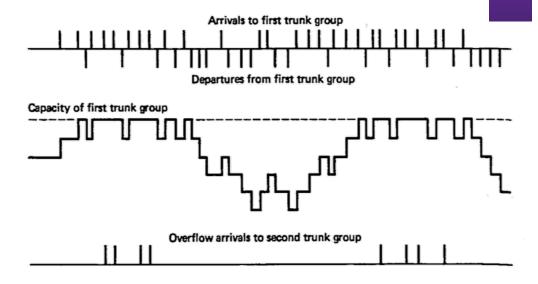
Área de Ingeniería Telemática

Tráfico de desbordamiento

Tráfico de desbordamiento

- Tráfico que no puede ser cursado por el camino principal (por bloqueo)
- Se "desborda" (overflow) a una ruta secundaria
- Un proceso de Poisson del que se eliminan aleatoriamente (iid) muestras con probabilidad p sigue siendo un proceso de Poisson, pero con menor tasa $(p\lambda)$
- En nuestro caso las llamadas desbordadas suelen ir en bloques
- Eso da mayores probabilidades de bloqueo que con un proceso de Poisson de igual media
- Se aproxima con un proceso de Poisson de mayor tasa
- (En los problemas, en caso de no disponer de las tablas emplearemos Poisson de igual tasa, aunque esto es subdimensionar)





Mayor complejidad

• ¿ Qué ocurre si las llamadas se retienen hasta que sean atendidas ?

Teoría de colas (función C de Erlang)

 ¿ Qué ocurre si tenemos en cuenta que hay un número finito (y conocido) de usuarios ?

Fórmula de Engset

Preguntas pendientes

- ¿Y en el caso de conmutación de paquetes?
 - Teoría de colas
 - Problemas más complicados
 - Peores aproximaciones
 - Mayor número de problemas sin resolver