ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Conjunto de problemas 2

- 1. Suponga dos equipos terminales de una red de conmutación de paquetes que envían paquetes por enlaces de comunicación interconectados por un conmutador (Figura 1). El equipo A emplea en su enlace una velocidad de transmisión de 10Mbps y dicho enlace tiene 10Km hasta el siguiente nodo de conmutación. El equipo B emplea una velocidad de transmisión de 15Mbps y su enlace recorre una distancia de 20Km. Ambos enlaces son full-duplex de la misma velocidad en ambos sentidos. Si en el instante t₀ el equipo A comienza a enviar un paquete de 1000 bytes hacia el equipo B y el equipo B en el mismo instante uno de 2000 bytes hacia el equipo A, calcule en qué instante llegará cada paquete al destino. ¿Cuál de los dos llegará antes?. Considere que el instante en el que el paquete llega al destino es cuando se termina de recibir su último bit. La velocidad de propagación en el enlace de A es de 200000 Km/s y de 250000 Km/s en el de B. A continuación calcule cuál de los dos paquetes llegará antes si ambos son de 1000 bytes.
- 2. En la topología de la Figura 1 se presentan dos equipos extremos de una red de área extensa de una tecnología de conmutación de paquetes. El equipo central denomina a sus dos interfaces "este" y "oeste" según su posición relativa. Los enlaces que tiene con los dos equipos funcionan a una velocidad de transmisión de 40Mbps full duplex con paquetes de hasta 200 bytes de datos y cabeceras de 8 bytes. La velocidad de propagación es la misma en ambos enlaces (200000Km/s). El enlace oeste es de 50Km y el enlace este de 2Km. El nodo A quiere enviar un fichero de 2000 bytes al nodo B tan rápido como pueda.
 - a. Suponiendo que el conmutador tarda un tiempo despreciable en tomar la decisión de encaminamiento calcule el tiempo que transcurre entre que el nodo A empieza a enviar el primer paquete hasta que el nodo B termina de recibir el último.
 - b. Suponiendo que el tiempo de procesado para cada paquete en el conmutador es de 5μs, repita el cálculo anterior

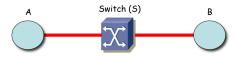


Figura 1 - Topología

- 3. En el escenario de la Figura 2 los nodos A y B envían paquetes al nodo C pasando por un conmutador de paquetes intermedio (S). El enlace A-S tiene una longitud de 10 Km, el enlace B-S de 20 Km y el S-C de 100 m. Todos los enlaces son full-duplex y con una velocidad de propagación de 200.000 Km/s. Los enlaces A-S y B-S emplean una velocidad de transmisión de 10 Mbps. En el instante t₀ los nodos A y B comienzan a enviar sendos paquetes de 100 bytes dirigidos al nodo C. El conmutador, cuando recibe un paquete, tarda 5 µs en procesarlo y tomar la decisión de encaminamiento. Si el enlace por donde debe sacarlo está libre lo transmitirá inmediatamente y si no lo dejará almacenado en una memoria asociada a ese enlace de salida (lo que se llama una "cola a la salida"). En el momento en el que el enlace queda de nuevo libre se extrae el primer paquete que se hubiera introducido en esa memoria y se transmite (asumimos despreciable el tiempo entre que se termina de transmitir un paquete y se empieza a transmitir el que estaba esperando en memoria).
 - a. Si el enlace S-C emplea una velocidad de transmisión de 20 Mbps, calcule el tiempo que pasará el paquete que envía A y el que envía B en memoria del conmutador. Calcule el instante en que llegará cada paquete a C.
 - b. Repita los cálculos anteriores suponiendo que el enlace S-C emplea una velocidad de 5 Mbps.
 - c. Suponga ahora que tanto A como B no envían un solo paquete sino dos cada uno, uno inmediatamente tras el anterior ("back to back"). El enlace S-C es de 10 Mbps. Calcule el tiempo que cada paquete pasa en memoria del conmutador. Calcule el instante en que el nodo C ha terminado de recibir el segundo paquete de A y el instante en que ha terminado de recibir el segundo de B. Haga una representación gráfica donde el eje X sea el tiempo transcurrido desde t₀ y el vertical sea la cantidad de bits de paquetes que tiene el conmutador en memoria, contando los bits de los paquetes en memoria solo cuando se ha terminado de recibir el paquete completo (el interfaz lo entrega al procesador) y que se liberan en cuanto se decide empezar a enviar el paquete (el procesador lo entrega a memoria intermedia del interfaz). A continuación, repita esa representación contando tanto la memoria del procesador como la del interfaz (eso quiere decir que cada bit que ha entrado en el interfaz cuenta, así como cada bit que ha sido enviado).

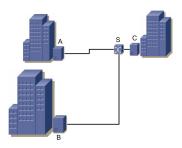


Figura 2 - Escenario

- 4. Dos equipos A y B están unidos a través de un conmutador de paquetes. El enlace entre el nodo A y el conmutador de paquetes emplea una tasa de transmisión de 10Mbps full-duplex. El enlace entre el conmutador y el nodo B emplea una tasa de transmisión de 2Mbps full duplex. Una aplicación en el nodo A envía un flujo de paquetes hacia B con un espaciado constante de 0,45ms (entre el comienzo de dos transmisiones consecutivas). Los paquetes tienen todos un tamaño de 2000bits. El nodo de conmutación puede mantener en memoria un máximo de dos paquetes a la espera de comenzar la transmisión. ¿Qué paquetes no llegan al nodo B? Calcule el tiempo que hará falta para que se transmitan 10 paquetes que lleguen al nodo B.
- 5. Supongamos el escenario de la Figura 1 con un conmutador de paquetes entre dos equipos finales. En el nodo A se está digitalizando una señal de voz obteniendo una muestra de 1 byte cada 0,125ms. Estas muestras se acumulan en memoria hasta formar un paquete y en cuanto se completa el paquete se envía hacia el nodo B. El paquete es reenviado por el conmutador (store-and-forward) y finalmente alcanza el nodo B donde se reproduce la señal de voz. La velocidad de transmisión de ambos enlaces es de 155Mbps, el tiempo de propagación para el total del camino es de 1ms y el conmutador tarda 0,5ms en tomar la decisión de conmutación. Cada paquete que se envía lleva L bytes de muestras de voz y una cabecera fija de 4 bytes. Dado ese tamaño L, calcule cuál es el mínimo y el máximo tiempo que puede transcurrir entre que se genera una muestra de voz en el nodo A y ésta se tiene en el nodo B para poder reproducirla. Nota: el mínimo y el máximo no se logran variando L sino que L es un dato fijo del problema.
- 6. Supongamos el escenario de la Figura 1 con un conmutador de paquetes entre dos equipos finales. El enlace entre el nodo A y el conmutador es de 10 Mbps full-duplex mientras que el que hay entre el conmutador y el nodo B es de 100 Mbps full-duplex. La distancia de cada enlace es de 80 Km y la velocidad de propagación es de 200.000 Km/s. El nodo A envía paquetes de 200 Bytes uno tras otro a máxima velocidad hacia el nodo B. Por cada paquete que recibe completamente, B envía de vuelta a A un paquete de 20 Bytes. Calcule cuántos paquetes ha transmitido (aunque no hayan llegado) completamente A en el instante en que recibe el primer paquete de B. El tiempo de procesado en el conmutador puede suponerlo despreciable, así como el tiempo entre que B recibe un paquete y comienza a enviar su respuesta. Dibuje un diagrama de tiempos que permita hacer el cálculo propuesto.
- 7. Supongamos cierta tecnología de LAN inalámbrica en la cual si un PC recibe transmisiones simultáneas de más de una máquina se corrompe la recepción de todos los paquetes. Se colocan 3 PCs, PC1, PC2 y PC3 solos en esa LAN. La distancia de PC1 a PC3 es d₁₃, la distancia de PC2 a PC3 es d₂₃. PC1 y PC2 comienzan a enviar en el mismo instante un paquete dirigido a PC3. El tamaño del paquete enviado por PC1 es L₁₃ y el enviado por PC2 es L₂₃. La velocidad de propagación de la señal es c y la velocidad de transmisión es v. ¿Cuál es el tamaño máximo que puede tener el paquete que envía PC1 para que no se produzca colisión?
- 8. Dos redes de conmutación de paquetes se encuentra localizadas en sedes de una empresa en edificios diferentes (Figura 3). Cada una de estas redes está formada por un conmutador con interfaces con una velocidad de transmisión de 100Mbps para los ordenadores, con cables de 100m hasta los mismos. Las dos redes se interconectan mediante un enlace a través de una WAN que transporta los paquetes a una velocidad de 2Mbps. La distancia que recorre el medio de transmisión en la WAN es de 30 Km. Las aplicaciones que se emplean en las dos sedes están relacionadas con la compra-venta de acciones en bolsa, escenario en el cual en poco tiempo pueden fluctuar los precios y convertir el beneficio de una venta en una pérdida. Por ello, se desea acotar el retardo que sufre la comunicación entre las aplicaciones en ambas sedes. Se impone al gestor de red que el retardo en un sentido no exceda de 500μs. Se refiere al tiempo entre que una aplicación en una sede empieza a enviar una trama y ésta se recibe en la máquina destino. Suponga en todos los enlaces una velocidad de propagación de 200000 Km/s.

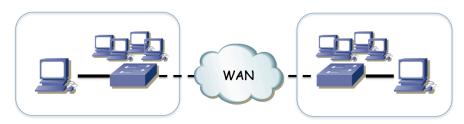


Figura 3 - Escenario del problema

- a) Las aplicaciones envían paquetes con muy poca información. Suponiendo un paquete de 64 Bytes calcule el retardo mínimo que sufre de un ordenador en un edificio a otro en el otro.
- b) ¿Podría darse un retardo mayor que 100ms para paquetes de ese tamaño? Si es así ponga un ejemplo de cómo podría darse y si no demuestre que no puede suceder.
- 9. Una tecnología de conmutación de paquetes emplea paquetes de tamaño variable con un tamaño mínimo de 64 bytes y tamaño máximo de 1518 bytes. Un enlace entre dos hosts atraviesa un único equipo de conmutación (Figura 1). Este equipo emplea almacenamiento y reenvío y añade un retardo de procesamiento a los paquetes de 80µs. La velocidad de transmisión en los enlaces es de 10Mbps en uno y de 2Mbps en el otro. La velocidad de propagación en el medio es de 220.000Km/s. La distancia del nodo A al conmutador es de 100m. Calcule la máxima longitud que puede tener el enlace entre el conmutador y el nodo B de tal forma que en situaciones de cola vacía en el interfaz de salida del conmutador, un paquete no tarde más de 8ms en ir desde el nodo A al nodo B (midiendo el tiempo desde que empieza a ser transmitido en A y hasta que termina de ser recibido en B).
- 10. Suponga un conmutador de paquetes S que emplea almacenamiento y reenvío con un tiempo despreciable de procesado, que se encuentra entre dos hosts A y B. Los enlaces son full-duplex, el enlace A-S con una tasa de transmisión v₁ y el enlace S-B con una tasa de transmisión v₂. El retardo de propagación en el enlace A-S es t_{p1} y en el enlace S-B es t_{p2}. El host A envía dos paquetes consecutivos de tamaño L. Deduzca una expresión para el retardo en cola que sufre el segundo paquete.
- 11. Supongamos el escenario de la Figura 1 con un conmutador de paquetes entre dos equipos finales. El tiempo de propagación en el enlace S-B es t_{p2}. El equipo A envía paquetes a B uno tras otro de forma continua. Todos tienen el mismo tamaño y dado éste y la velocidad de transmisión de cada enlace el tiempo de transmisión de los paquetes en el enlace A-S es t_{tx} y en el enlace S-B es 2t_{tx}. Calcule una expresión que en función de los parámetros indicados devuelva el número de paquetes que ha enviado completamente A en el instante en que termina de llegar el primer paquete a B. Dada una velocidad de propagación v idéntica en ambos enlaces indique qué distancia debería haber entre cada par de equipos para que cuando llegue el primer paquete a B se hayan terminado de enviar al menos 5 paquetes en A. Calcule una expresión que en función de los parámetros indicados devuelva el número de paquetes que ha enviado completamente A en el instante en que termina de llegar el paquete n-ésimo a B.
- 12. Supongamos el escenario de la Figura 1 con un conmutador de paquetes entre dos equipos finales. El primer enlace es a 10 Mbps y el segundo a 8 Mbps (ambos full-duplex). La distancia de cada enlace es de 80 Km y la velocidad de propagación es de 200000 Km/s. Una aplicación en el nodo A envía paquetes de 1400 Bytes hacia el nodo B. Tras terminar de enviar un paquete espera 200 ms antes de empezar a transmitir el siguiente. El equipo de conmutación dedica 50 ms a procesar cada paquete que le llega antes de poder reenviarlo, empleando para ello store-and-forward. Dibuje un diagrama de tiempos que permita calcular el throughput de datos y calcúlelo.
- 13. ¿Qué es un protocolo? ¿Qué es una PDU? Enumere y describa ventajas e inconvenientes de emplear una arquitectura de protocolos en capas. ¿En qué se diferencia un "protocolo" de un "interfaz" y de un "servicio" al hablar de una arquitectura de protocolos en capas? Explique diferencias entre la arquitectura de protocolos OSI y TCP/IP. ¿En qué nivel se encuentra el protocolo IP? Explique para qué sirve el encapsulado, qué inconvenientes presenta.
- 14. Suponga el escenario de la Figura 1. La tecnología empleada se basa en conmutación de paquetes. Se va a enviar un bloque de datos de 1000 bytes. La PDU que se construye añade 10 bytes de cabecera. Una alternativa es enviar los 1000 bytes en un solo paquete que sería entonces de 1010 bytes. Otra posibilidad es partir ese bloque de datos en varios paquetes y enviarlos uno tras otro. Si en un caso cualquiera se divide en

- N paquetes aproximadamente iguales calcule el número de paquetes que se deberían emplear para minimizar el tiempo que transcurre entre que se empieza a enviar el primero en A y se termina de recibir el último en B.
- 15. Suponga un enlace de un conmutador por el que recibe paquetes de otro equipo que empiezan a llegar en los instantes respectivos 0, 0.3, 0.6, 0.75, 1.1, 1.4, 1.6, 1.9, 3.2 y 3.5 segundos. Los tamaños respectivos de los paquetes son 100, 200, 100, 300, 4000, 512, 876, 1024, 1500 y 256 bytes. La tasa de transmisión de ese enlace es de 1.5Mbps. Tomando el eje de tiempo marque en él el intervalo que dura la recepción de cada paquete. Calcule el throughput medio en cada intervalo de 0.5 segundos. Calcule el throughput medio en cada intervalo de 2 segundos. Haga representaciones gráficas (eje horizontal el instante medio del intervalo, eje vertical el valor del throughput medio).
- 16. Dos hosts se encuentran interconectados a través de una WAN basada en conmutación de paquetes. El camino entre un host y el otro es simétrico y atraviesa un solo conmutador de la WAN. Uno de los enlaces emplea una tasa de transmisión de 25 Mbps y el otro de 100 Mbps, ambos full-duplex. Uno de los hosts envía dos paquetes consecutivos de L bytes dirigidos al otro extremo. En el mismo instante comienza el otro host también a enviar otros dos paquetes consecutivos de idéntico tamaño al otro extremo. Interesa el instante en que termina de llegar una secuencia de dos paquetes al otro extremo. Demuestre gráficamente cuál de los dos hosts recibe primero los dos paquetes.
- 17. En la Figura 4 se muestra parte de una red de conmutación de paquetes de una tecnología en la cual todos los paquetes son de 53 bytes. Todos los enlaces son simétricos full-duplex. La tasa de transmisión de los enlaces con host es de 155Mbps, la tasa de transmisión de los enlaces entre conmutadores es de 50Mbps. Los enlaces A-S1 y S1-S2 tiene una longitud de 1Km cada uno, el enlace B-S1 una longitud de 600m, el enlace S3-S2 de 200m y el enlace S2-C de 100m. La velocidad de propagación en todos los enlaces es de 200.000Km/s. Los conmutadores tienen la capacidad de mantener en memoria hasta 200 paquetes. En el instante t=0 el host A comienza el envío de un paquete. En t=4 μs el host B comienza el envío de otro paquete. En t=5μs comienza el conmutador S3 a enviar un paquete hacia S2. Todos estos paquetes se dirigen al host C. Todos los conmutadores tienen un tiempo de procesado de 1μs. Calcule en qué instante de tiempo termina de llegar cada paquete de A y B al conmutador S2. Calcule en qué instante de tiempo termina de llegar cada paquete al host C.

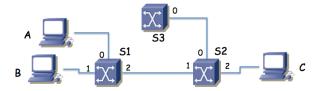


Figura 4 - Topología del problema

- 18. Dos hosts A y B se comunican a través de una red de conmutación de paquetes. El camino entre uno y otro por dicha red es simétrico y atraviesa 6 conmutadores que emplean store&forward. Todos los enlaces usan una tasa de transmisión de 10Gbps full-duplex, con una longitud del cable de 100 m y una velocidad de propagación en todos ellos de 200.000 Km/s. El tiempo de procesado en los conmutadores es despreciable. Se desea que en caso de que los enlaces no estén congestionados el tiempo que transcurra entre que se empieza a transmitir un paquete en A hasta que termina de recibirse en B no exceda de los 5 μs. Calcule el tamaño máximo que deben tener los paquetes que envía A para cumplir ese requisito.
- 19. La Figura 5 muestra un conmutador de paquetes interconectando 3 hosts. Los paquetes pueden ser de cualquier número de bytes entre 64 y 1518. Todos los enlaces son full-duplex a 10Mbps. En un interfaz cualquiera (de un host, de un switch, etc) una trama no puede comenzar a enviarse inmediatamente a continuación de terminar de enviar la anterior. Entre ambas debe dejarse un tiempo libre equivalente al tiempo de envío de 20 bytes y tendremos esto en cuenta en este problema. El tiempo que tarda el conmutador en procesar una trama para decidir si es correcta y por dónde reenviarla es de 5 µs. Consideraremos despreciable el retardo de propagación en todos los cables dado que son de pocos metros. El conmutador cuenta con una memoria compartida de 128 MiBytes para almacenar paquetes. El conmutador reenvía por un puerto de salida las tramas en el mismo orden en que las recibe, contando el instante en que termina de recibirse cada trama (independientemente del puerto por el que se haya recibido).

- a) Comenzando en el instante t₀=0 el host A envía dos tramas consecutivas al host C, la primera del tamaño máximo y la segunda del tamaño mínimo. Calcule el instante de tiempo (relativo a t₀) en que cada una de esas dos tramas termina de ser recibida en el host C.
- b) Ahora suponga que en el instante 1220 μs (a contar desde t₀) el host B envía 3 tramas consecutivas del tamaño mínimo al host C y el host C envía empezando en el mismo instante otras 3 tramas consecutivas del tamaño mínimo al host A. Calcule ahora el instante en que termina de llegar cada trama enviada por A a C

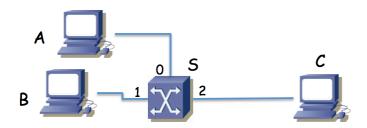


Figura 5 - Topología del problema

- 20. Dos hosts A y B se comunican a través de un conmutador de paquetes S que hace almacenamiento y reenvío (Figura 1). Ambos enlaces son full-duplex de tasa simétrica. El enlace entre A y el conmutador es a 10Mbps. El enlace entre B y el conmutador es a 1Mbps. El conmutador es capaz de mantener un máximo de 2 paquetes en memoria/buffer (sin contar los paquetes que en ese momento esté recibiendo o enviando pues se encuentran en la memoria de los interfaces correspondientes). El tiempo de conmutación en S es despreciable. El host A envía paquetes a B. Envía 3 paquetes de 100 bytes cada uno, uno tras otro sin tiempo de espera entre ellos. Tras terminar la transmisión del tercer paquete espera T segundos inactivo y envía de nuevo otros 3 paquetes idénticos, repitiendo continuamente este proceso de pausas y envíos.
 - a) Calcule el mínimo valor de T para que no se pierda ningún paquete de la segunda ráfaga.
 - b) Explique cómo depende este tiempo de los retardos de propagación en cada uno de los enlaces.
 - c) Describa qué sucederá con los paquetes de la tercera ráfaga.
- 21. La Figura 5 muestra una red de una tecnología de conmutación de paquetes con 3 hosts interconectados. Los conmutadores trabajan en capa 2, reenviando tramas. El nivel físico no puede enviar dos paquetes completamente adyacentes sino que debe dejar el canal libre durante el tiempo equivalente a la transmisión de 24 bits antes de cada nueva transmisión. Las PDUs de capa 2 cuentan con una cabecera de 16 bytes, un bloque de datos de entre 20 y 500 bytes y una cola de 2 bytes. Si no hay suficientes datos para alcanzar el mínimo se rellena hasta el tamaño mínimo con bytes a cero. Los hosts envían dentro de las tramas los mensajes de una aplicación distribuida.

Los enlaces de los hosts A y B son full-duplex a 256Kbps mientras que el de C es full-duplex a 512Kbps. El enlace de A tiene una longitud de 500m; el de B de 2Km y el de C de 20m. La velocidad de propagación en todos los enlaces es de 220.000Km/s.

El conmutador hace conmutación de datagramas con almacenamiento y reenvío de los paquetes y tarda 0.5ms en procesar una trama para decidir si es correcta y por dónde reenviarla. Posee una memoria de 32KiB para almacenar paquetes que vengan de cualquier puerto.

En el instante t=0 el host A manda un mensaje al C. Es una petición de una aplicación, que ocupa solo 8 bytes y que se envía dentro de una trama de nivel de enlace. En respuesta C le envía un mensaje de aplicación de 400 bytes. En el instante t=4s el host B manda también un mensaje de 8 bytes a C y éste le responde con uno de 500 bytes. El host C tarda 1ms entre que recibe un mensaje de A o B y que tiene lista para enviar la respuesta.

Calcule en qué instante llegará a su destino cada uno de los mensajes que envía C (si es que llegan).