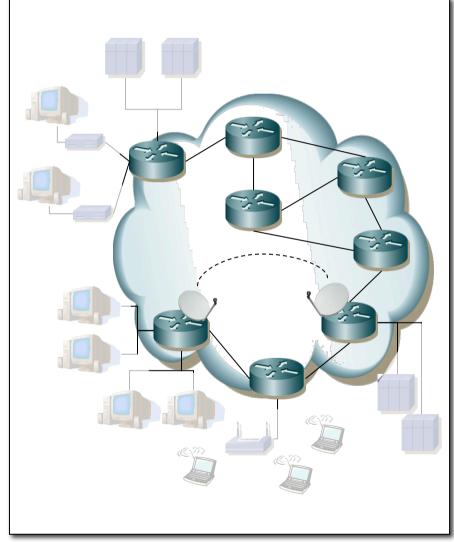
Paradigmas de conmutación

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Arquitectura de Redes, Sistemas y Servicios Grado en Ingeniería en Tecnologías de Telecomunicación, 2º

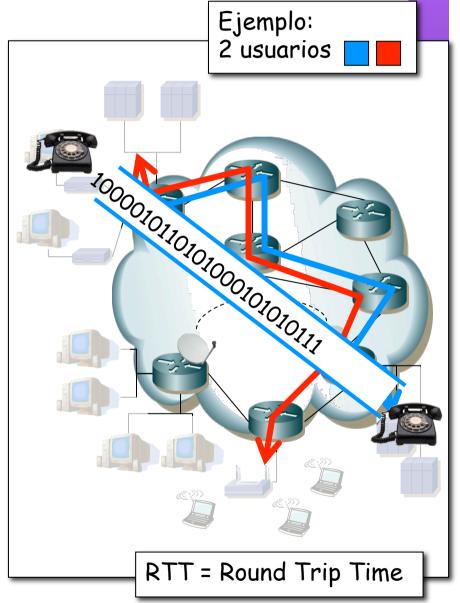
Temario

- Introducción
- 2. Arquitecturas de conmutación y protocolos
 - Elementos, protocolos y arquitecturas de protocolos
 - Arquitecturas OSI y TCP/IP
 - Servicios, interfaces, funcionalidades
 - Conmutación de circuitos y de paquetes
 - Retardos de transmisión, propagación, procesado, cola
 - Variación del retardo, pérdidas y throughput
- 3. Introducción a las tecnologías de red
- 4. Control de acceso al medio
- 5. Conmutación de circuitos
- 6. Transporte fiable
- 7. Encaminamiento
- 8. Programación para redes y servicios


Objetivos

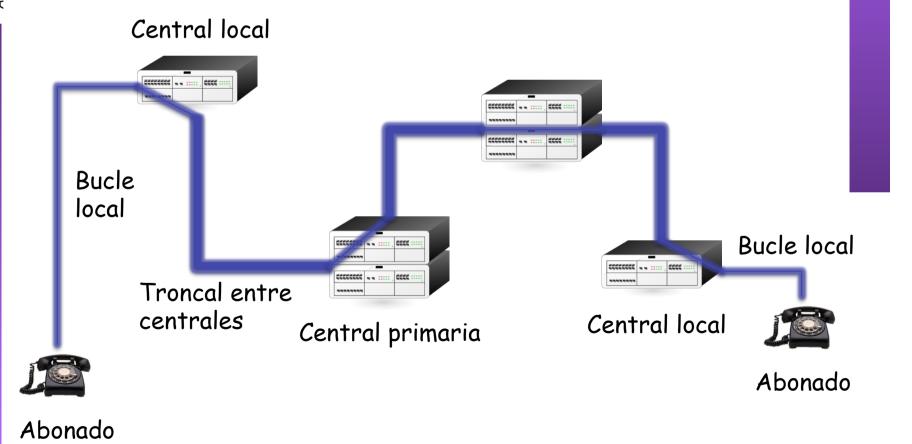
- Comprender el funcionamiento de los paradigmas de conmutación de circuitos y de paquetes
- Diferenciar y saber trabajar con retardos de transmisión y de propagación

Núcleo de la red


- Interconexión de conmutadores
- ¿Qué es conmutar?
 - Reenviar la información
 - De un nodo de conmutación a otro
 - De un nodo de conmutación al end host
- ¿Cómo se transfieren los datos por la red?
 - Conmutación de circuitos
 - Conmutación de paquetes

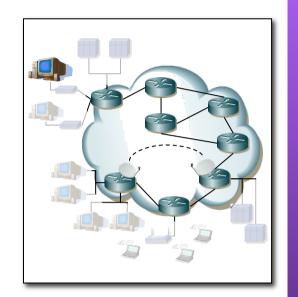
Núcleo de la red

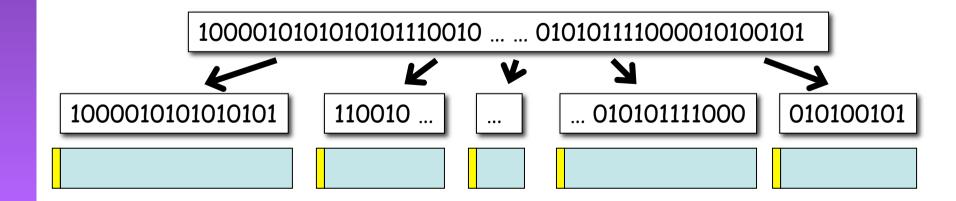
Conmutación de circuitos


- Tres fases: Establecimiento, Transferencia y Desconexión
- RTT en el establecimiento (...)
- Comunicación transparente (...)
- Reserva de recursos:
 - Recursos "extremo-a-extremo"
 - Ancho de banda, capacidad en los conmutadores
 - Recursos (camino) dedicados: no se comparten aunque no se usen
 - Garantías de calidad
- Ineficiente
 - Capacidad del canal dedicada durante la vida del "circuito"
 - Si no se envían datos la capacidad se desperdicia

Conmutación de circuitos

- Caso típico: red telefónica conmutada (...)
- Enlaces troncales permiten cursar múltiples llamadas simultáneamente

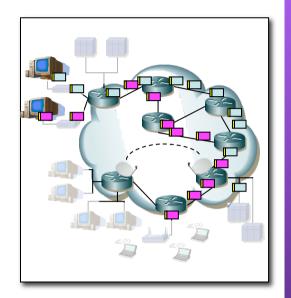




Núcleo de la red

Conmutación de paquetes

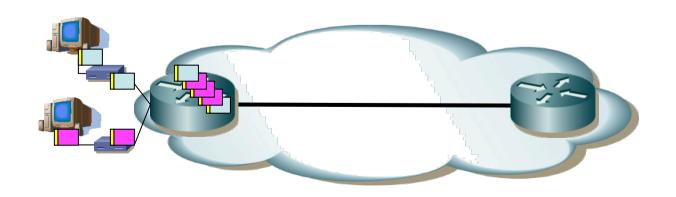
- La información se divide en bloques (...)
- Datos + información de control (...)
- Cada paquete contiene información para llegar al destino
- No se suelen reservar recursos (hay arquitecturas en que sí se puede)



Núcleo de la red

Conmutación de paquetes

- Enlaces compartidos por paquetes de diferentes comunicaciones
- Conversión de velocidad
- Store-and-forward
- Cada paquete usa toda la capacidad del enlace...



Núcleo de la red

Conmutación de paquetes

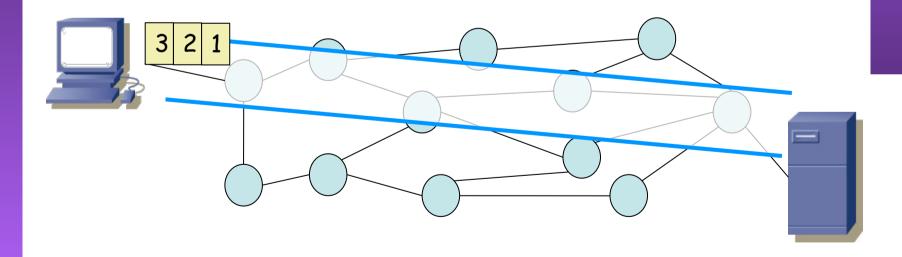
 ...pero puede tener que esperar a que otros se envíen antes

- Multiplexación estadística
 - Mejor aprovechamiento de recursos
 - Dimensionamiento más complicado

Conmutación de paquetes

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

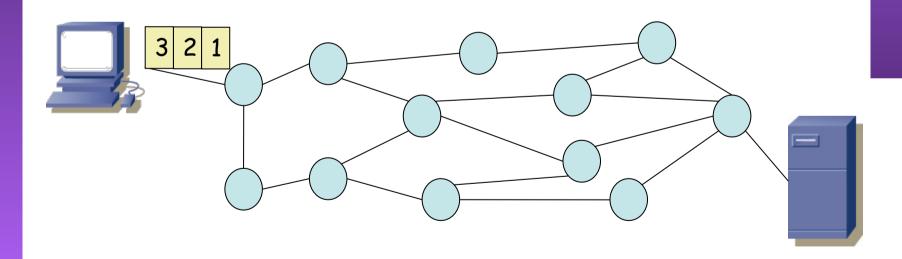
Tipos


- Circuitos Virtuales
- Datagramas

Conmutación de paquetes

Circuitos virtuales

- "Orientado a conexión"
- Se establece un camino extremo a extremo (...)
- Los paquetes siguen el camino establecido (...)



Conmutación de paquetes

Datagramas

- Cada nodo toma la decisión de encaminamiento para cada datagrama (...)
- Sin conexión

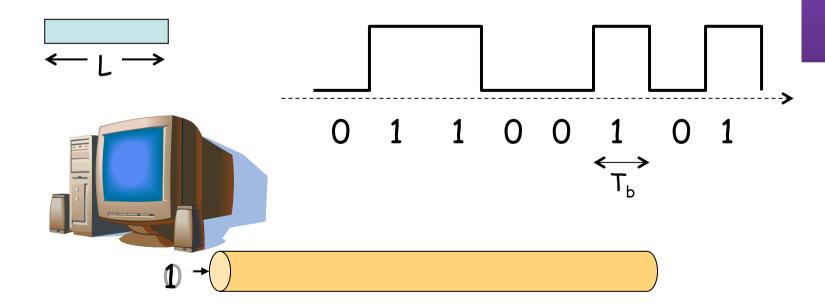
Circuitos virtuales y datagramas

Circuitos virtuales

- La red puede proporcionar entrega en orden y control de errores
- Los paquetes se reenvían más rápido (hay que pensar menos por cada paquete)
- Menos fiabilidad de la red (es más dificil adaptarse a que caiga un enlace)

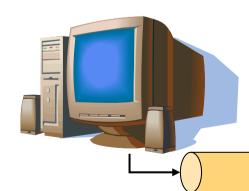
Datagramas

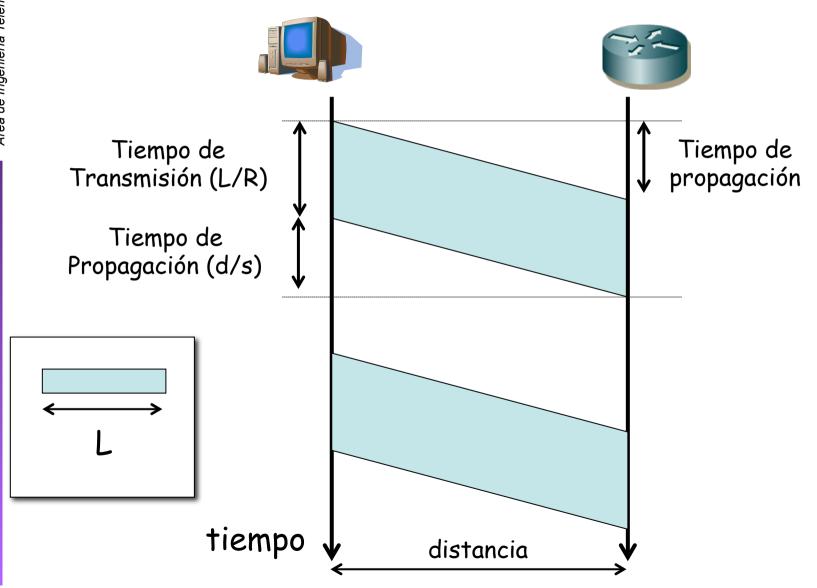
- No hay establecimiento de circuito (más rápido)
- Más flexible
- Más fiable



Retardos

Retardo de transmisión


- Tiempo que tarda el transmisor en colocar los bits en el canal
- También llamado retardo de serialización
- Bits por segundo (bps) (...)
- Ejemplo:
 - Longitud del paquete L = 1.500 Bytes = 12.000 bits
 - Tasa de transmisión R = 57.600 bps (T_b =17.36 µseg)
 - Tiempo de transmisión = L/R = 12.000 bits / 57.600 bps ≈ 208 mseg


Retardo de propagación

- Tiempo que tarda la señal en llegar al otro extremo del sistema de transmisión (...)
- Ejemplo:
 - Longitud del enlace físico d = 2.000 Km
 - Velocidad de propagación en el medio s = 200.000 Km/seg
 - Retardo de propagación = $d/s = 2x10^6 \text{ m} / (2x10^8 \text{ m/seg}) = 10 \text{ mseg}$
- La velocidad de transmisión y la velocidad de propagación son conceptos muy diferentes
- Velocidad de propagación en Km/s
 - En coaxial en torno a 250.000 Km/s
 - En fibra óptica en torno a 200.000 Km/s

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Ejemplo

• L = 1500 Bytes

• R = 10 Mbps

• s = 200.000 km/s

• d = 100 m

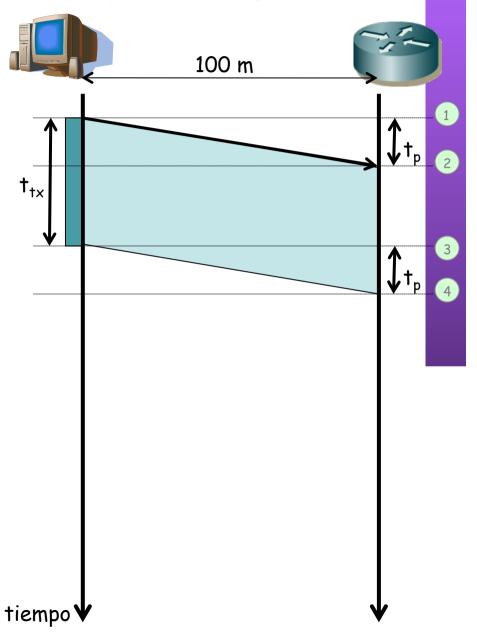
• ¿Cuándo empieza a recibirse?

• ¿Cuándo se ha terminado de recibir?

tiempo

100 m

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

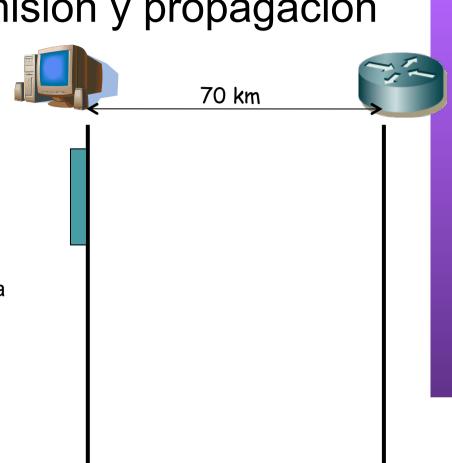


- L = 1500 Bytes
- R = 10 Mbps
- s = 200.000 km/s
- d = 100 m
- ¿Cuándo empieza a recibirse?
- ¿Cuándo se ha terminado de recibir?

•
$$t_{tx} = L/R = 1500x8/10^7 = 1.2 \text{ ms}$$

•
$$t_p = d/s = 100/(2x10^8) = 0.5 \mu s$$

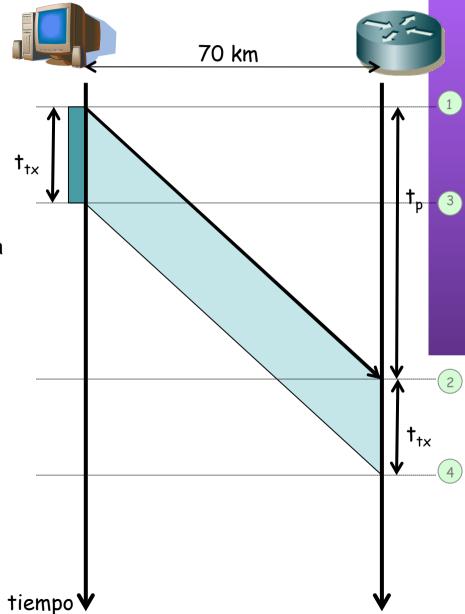
- 1. Empieza transmisión (t=0)
- 2. Empieza recepción primer bit (t_n)
- 3. Termina transmisión (t_{tx})
- 4. Termina recepción ($t_{tx}+t_p = 1.2005$ ms)



tiempo

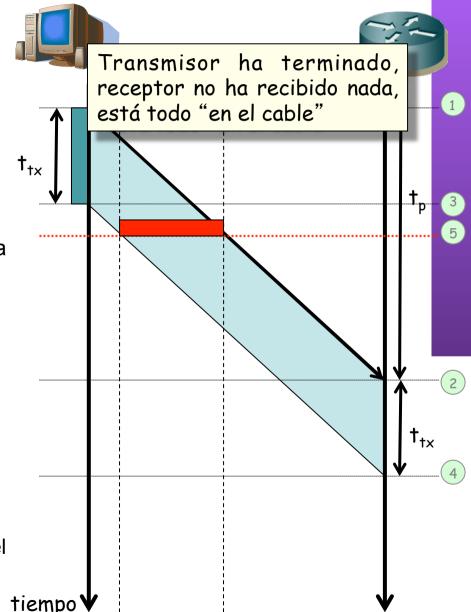
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- L = 1500 Bytes
- R = 100 Mbps
- s = 200.000 km/s
- d = 70 km
- ¿Cuándo empieza a recibirse?
- ¿Cuándo se ha terminado de recibir?
- ¿Dónde está 0.17 ms tras empezar la transmisión?



ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- L = 1500 Bytes
- R = 100 Mbps
- s = 200.000 km/s
- d = 70 km
- ¿Cuándo empieza a recibirse?
- ¿Cuándo se ha terminado de recibir?
- ¿Dónde está 0.17 ms tras empezar la transmisión?
- $t_{tx} = L/R = 1500x8/10^8 = 0.12 \text{ ms}$
- $t_p = d/s = 7x10^4/(2x10^8) = 0.35$ ms
- 1. Empieza transmisión (t=0)
- 2. Empieza recepción primer bit (t_p)
- 3. Termina transmisión (t_{tx})
- 4. Termina recepción ($t_{tx}+t_p = 0.47 \text{ ms}$)



ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- L = 1500 Bytes
- R = 100 Mbps
- s = 200.000 km/s
- d = 70 km
- ¿Cuándo empieza a recibirse?
- ¿Cuándo se ha terminado de recibir?
- ¿Dónde está 0.17 ms tras empezar la transmisión?
- $t_{tx} = L/R = 1500x8/10^8 = 0.12 \text{ ms}$
- $t_p = d/s = 7x10^4/(2x10^8) = 0.35$ ms
- 1. Empieza transmisión (t=0)
- 2. Empieza recepción primer bit (t_p)
- 3. Termina transmisión (t_{tx})
- 4. Termina recepción ($t_{tx}+t_p = 0.47 \text{ ms}$)
- Instante 0.17 ms
 - 0.05ms x s a 0.17ms x s (10-34km)
- **Ejercicio**: ¿cuántos bits caben en el cable si la distancia es de 100km?

Resumen

- Conmutación de circuitos
 - Establecimiento del circuito
 - Reserva de recursos
- Conmutación de paquetes
 - Cada paquete emplea toda la capacidad del enlace
 - Un usuario puede aprovechar los silencios de otros
 - Circuitos virtuales o datagramas
- Retardo de transmisión y de propagación