ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Acceso al medio (3) CSMA/CD

Area de Ingeniería Telemática http://www.tlm.unavarra.es

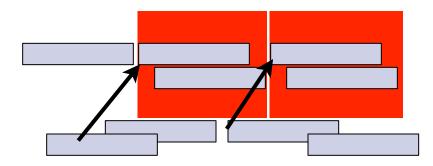
Arquitectura de Redes, Sistemas y Servicios Grado en Ingeniería en Tecnologías de Telecomunicación, 2º

Temario

- Introducción
- 2. Arquitecturas de conmutación y protocolos
- 3. Introducción a las tecnologías de red
- 4. Control de acceso al medio
- 5. Conmutación de circuitos
- 6. Transporte fiable
- 7. Encaminamiento
- 8. Programación para redes y servicios


Temario


- Introducción
- 2. Arquitecturas de conmutación y protocolos
- 3. Introducción a las tecnologías de red
- 4. Control de acceso al medio
 - 1. ALOHA y ALOHA ranurado
 - 2. CSMA y variantes, persistencia
 - 3. CSMA/CD
 - 4. CSMA/CA
 - Ideas y clasificación de protocolos MAC
- 5. Conmutación de circuitos
- 6. Transporte fiable
- Encaminamiento
- 8. Programación para redes y servicios


CSMA

- CSMA con carga moderada
- Se acerca al limite
 Menos colisiones por menor tiempo vulnerable

$$g = \frac{1}{1 + 1}$$

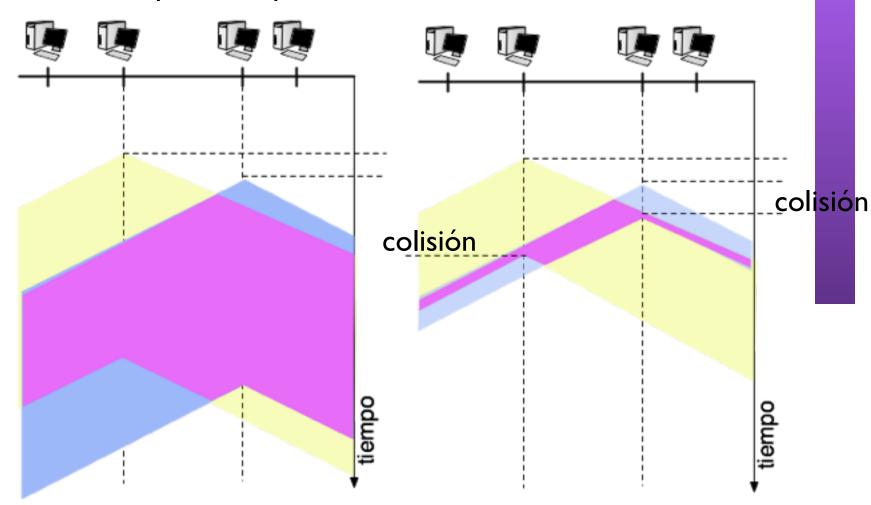
 El goodput cae por este tiempo desperdiciado

Idea CSMA/CD

- Con CSMA, la colisión ocupa el medio durante el tiempo de transmisión
- Se puede mejorar si las estaciones son capaces de recibir a la vez que transmiten
 - No siempre es posible
 - Determinado hardware por ejemplo antenas o receptores no permiten a la vez enviar y escuchar el medio
- CSMA/CD reglas:
 - Si el medio está libre transmitir
 - Si está ocupado esperar a que este libre y transmitir
 - Si veo una colision dejar de transmitir
 - Despues esperar un tiempo aleatorio y retransmitir
- CD = Detección de colision (collision detection)

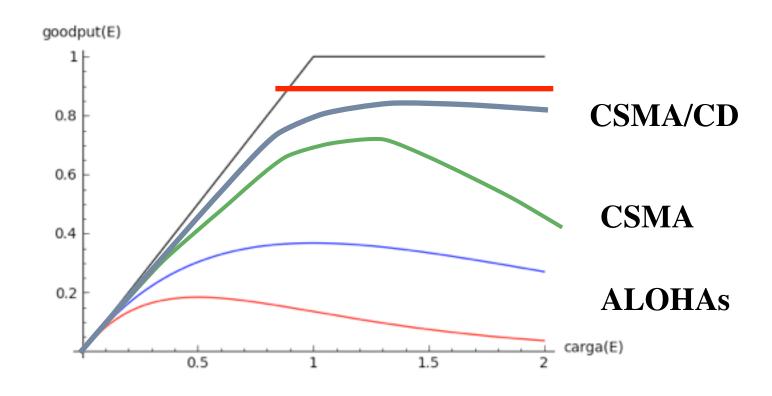
Detección de colisión

En Bus

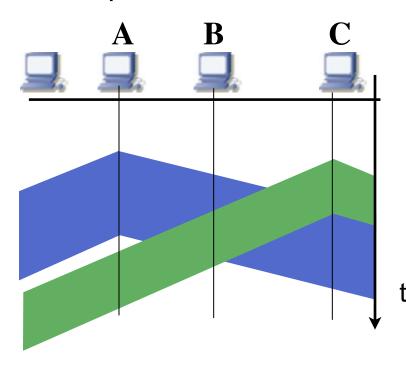

- La colision produce mayor voltaje
- Si la señar del cable es mayor que la que está generando la estación detecto colisión
- La señal se atenua con la distancia
- Limite de 500m (10Base5) o 200m (10Base2)
- En topología en estrella
 - Actividad en más de un puerto es una colision
 - Se usa una señal especial para indicar colisión
- En inalámbrico...
 - Es un poco difícil en ese caso...

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

CSMA/CD


Cada dispositivo para al detectar la colisión

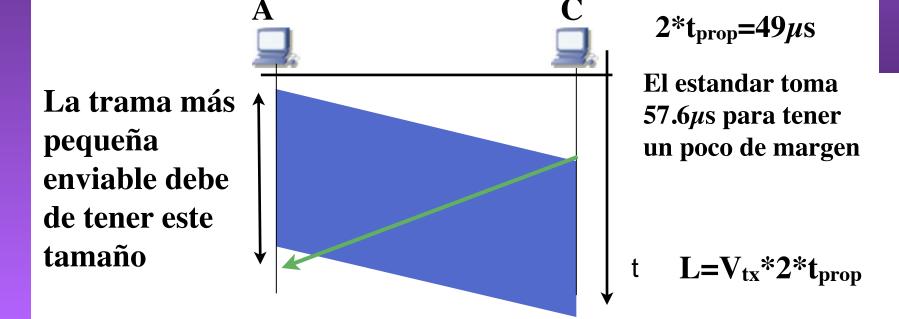
Prestaciones CSMA/CD


- El goodput se mantiene mejor en carga elevada
- Hay colisiones pero dejan libre el canal para que otras estaciones lo usen
- El modelo matemático es complejo, pero nos acercamos mas al limite teórico

Tamaño mínimo de trama

- CSMA/CD en Ethernet
- Para garantizar que todas las colisiones se detecten
 - Si una estación empieza a transmitir y va a producirse una colisión queremos asegurarnos de que se de cuenta antes de acabar de transmitir
 - Para poder retransmitir la trama

Problema La trama enviada por A no ha llegado a B


Pero A no ha detectado colisión

Como se arregla?

Tamaño mínimo de trama

- Caso peor
 - A y C todo lo alejados que pueden estar (distancia máxima Ethernet 2500m 4 repetidores y 500m en 10Base5)
 tprop=5*500m/200e6m/s=12.5μs + 3μs(repetidor)*4 = 24.5μs
 - A envía la trama más pequeña L
 - C empieza a enviar justo antes de llegarle la trama de A

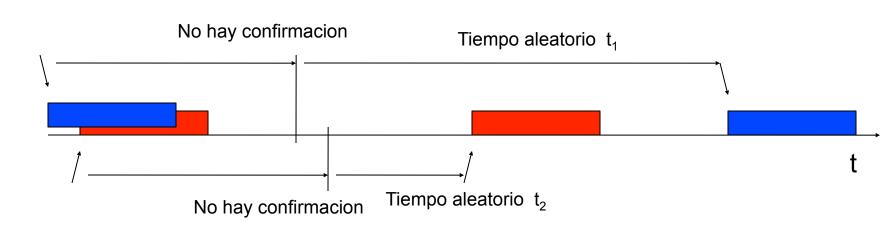
Tamaño mínimo de trama

- V=10Mbps L_{min}=576bits=72bytes 8pre+14+ 46datos +4crc
 512 bits mas el preambulo
- De ahi viene el tamaño mínimo de trama Ethernet
- Se toma el tiempo de transmision de 512bits como slot ethernet, el tiempo básico para los algoritmos de detección de colisiones.
 En el tiempo de 1 slot se puede asumir que cualquier trama que empecemos a transmitir habrá empezado a llegar a toda la red.
 Si la trama ha colisionado, en ese tiempo ya se habra detectado la colisión y los participantes habrán desistido de transmitir
- El slot es dependiente de la velocidad
 10Base slot 512bits 51.2µs
 100Base slot 512bits 5.12µs
 1000Base slot 4096bits 4.09µs

Recuperación de la colisión

 Una vez que detectada colisión en un tiempo menor que 1slot los participantes que intentaban transmitir han desistido...

- Y qué hacen ahora?
- Si reintentan los dos a la vez volveran a colisionar



Backoff

- Antes de volver a transmitir en muchos protocolos se espera un tiempo aleatorio
 - Normalmente para evitar la coincidencia de varias estaciones que puedan querer transmitir a la vez

Le llamaremos backoff

- Por ejemplo en ALOHA se usa despues de una trama errónea para no volver a colisionar
- Consigue efectos parecidos al CSMA p-persistente
- Lo más simple es elegir un número aleatorio uniforme en un rango conocido
- En CSMA/CD se complica un poco

Binary Exponential Backoff

- IEEE 802.3 y Ethernet usan binary exponential backoff
- Las estaciones reintentan el envío de las tramas que colisionan
 - Tiempo básico de espera 512bits en 10 o 100Mbps (51us o 5.1us)
 - En los 10 primeros intentos el tiempo medio de espera se dobla
 0-1 x 51us -> 0-4 x 51us -> 0-8 x 51us -> ...
 - En los 6 siguientes el tiempo medio se mantiene constante
 - Despues de 16 colisiones la estacion desiste y da error para esa trama
- El algoritmo 1-persistente con binary exponential es eficiente para un amplio rango de cargas
 - Poca carga, ocupa el canal inmediatamente
 - Mucha carga, espera más tiempo y hay menos colisiones
- Problema: el backoff tiene un efecto last-in, first-out
 - Las estaciones con tramas nuevas tienen preferencia sobre las que ya llevan tiempo reintentando un envío
 - Captura del canal

Conclusiones

- CSMA/CD
 - Permite aproximar la eficiencia del canal al limite teórico (dependiente de a)
- Se usa en redes reales Ethernet 10,100,1000 para medio compartido
- ¿Y si no podemos detectar colisiones?