Arquitectura de protocolos en LANs

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Arquitectura de Redes, Sistemas y Servicios 3º Ingeniería de Telecomunicación

Temario

- 1. Introducción
- 2. Arquitecturas de protocolos
- 3. Conmutación de paquetes
 - Arquitectura de protocolos para LANs
 - Ethernet
 - LANs IEEE 802.11 (WiFi)
 - ATM
 - Protocolos de Internet
- 4. Conmutación de circuitos
- 5. Tecnologías
- 6. Control de acceso al medio en redes de área local
- 7. Servicios de Internet

Objetivos

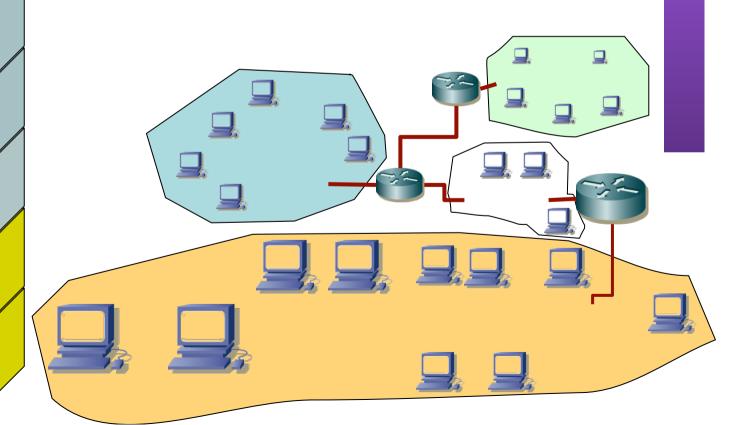
- Conocer las diferentes topologías básicas de red y comprender sus ventajas e inconvenientes
- Conocer la arquitectura del modelo de referencia del grupo IEEE 802

Comunicación dentro de una red

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- Origen y destino del paquete están en la misma red
 - Dos hosts
 - Un host y un "gateway" con otra red
 - Dos "gateways"
- La red puede ser una LAN, MAN o WAN

1 '


Aplicación

Transporte

Red

Enlace / Network access

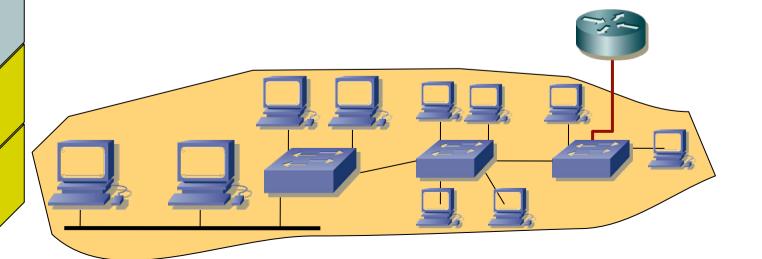
Físico

Comunicación dentro de una red

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- Origen y destino del paquete están en la misma red
 - Dos hosts
 - Un host y un "gateway" con otra red
 - Dos "gateways"
- La red puede ser una LAN, MAN o WAN

Aplicación


Transporte

Red

Enlace / Network access

Físico

Vamos a empezar por el caso de LANs y en concreto de Ethernet

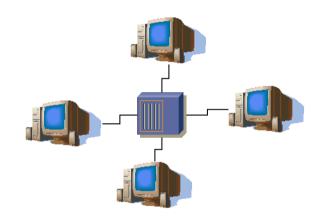
Local Area Networks (LANs)

- Conectan estaciones de trabajo, periféricos, terminales...

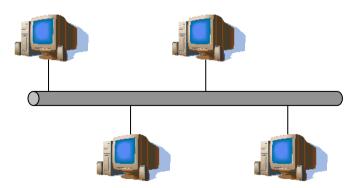
- Compartir recursos
- Suelen ser tecnologías basadas en medios de broadcast
- Muchos usuarios

Ejemplos: Ethernet, WiFi, FDDI, Token Ring, etc

Topologías de LAN


 Define cómo están conectados los hosts

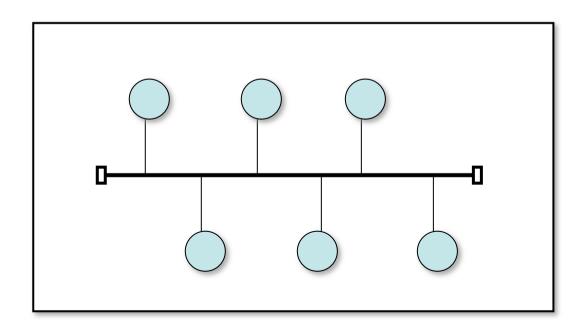
Dos ámbitos:


- Topología física
 - Diseño y cableado de la red
 - Interconexionado
- Topología lógica
 - Cómo los hosts emplean el medio

Ejemplo: Ethernet

Topología física

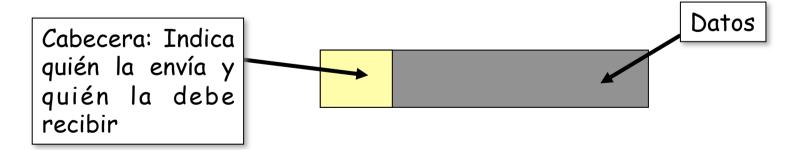
Topología lógica



Topologías

Bus

- Todas las estaciones se unen a un medio de transmisión lineal (el bus)
- Si es física suele requerir un *terminador*
- El bus es un punto de fallo
- Una transmisión cualquiera alcanza ambos extremos del bus
- Requiere direccionamiento y un mecanismo para regular las transmisiones


Comunicación en un bus

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

¿Cómo?

- Transmitir datos en bloques (tramas)
- Origen envía al medio la información que desea hacer llegar a otra máquina
- La información incluye una identificación de la máquina destino
- Destinatario recoge la información, el resto la ignoran (red broadcast)

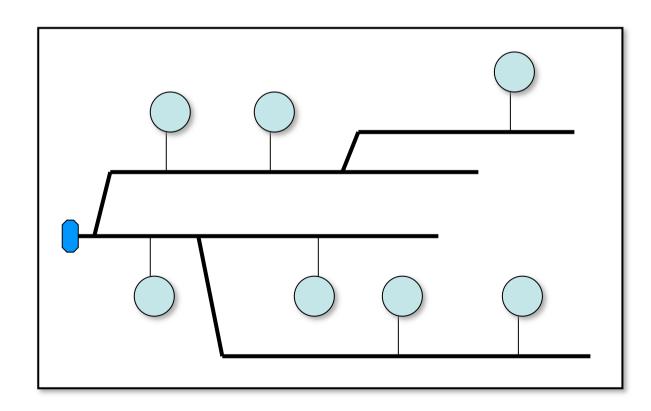
Formato típico de la trama

Comunicación en un bus

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Ejemplo:

Tecnología en bus (Ethernet original) (... ...)

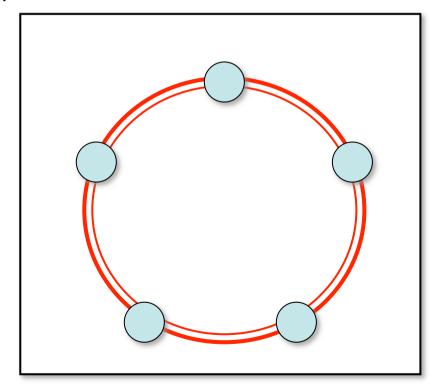


Topologías

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Árbol

- Generalización del bus
- El árbol comienza en la cabecera (headend)
- La transmisión de una estación se propaga por todo el medio

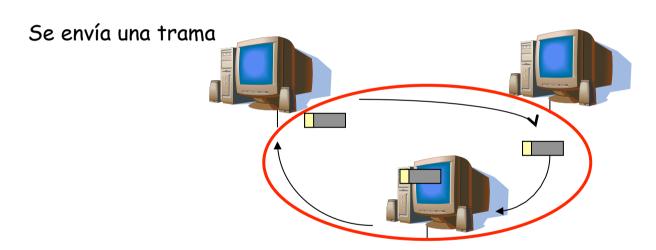


Topologías

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Anillo

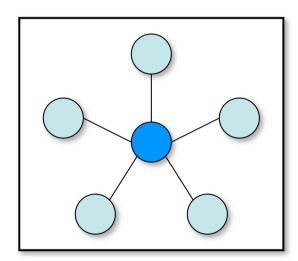
- Simple (un solo sentido)
- Doble (ambos sentidos)
- Ejemplo (...)



Comunicación en un anillo

Ejemplo:

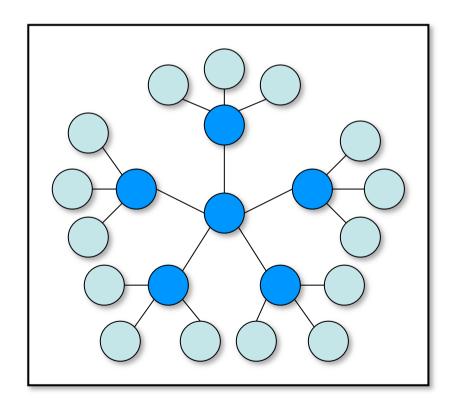
Tecnología en anillo (Token Ring) (. . .)


El destinatario se guarda una copia

Topologías

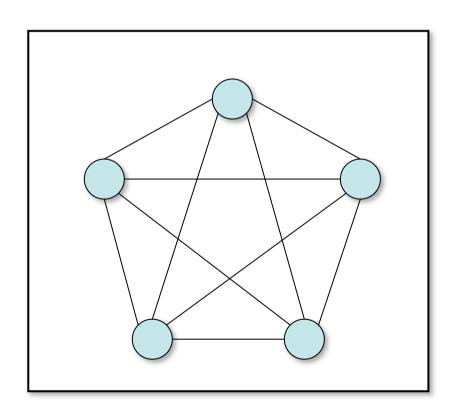
Estrella

- Todos conectados a un nodo central:
 - Hub: Retransmite cada trama a todos (lógicamente es un bus)
 - Switch: store-and-forward, solo al destinatario
- Más costosa que el bus
- Independencia de los hosts a efecto de fallos en el cable


El elemento central es un punto de fallo

Topologías

Estrella extendida


Expansión de la estrella

Topologías Malla completa (*full mesh*)

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

Arquitectura de protocolos

Aplicación

Presentación

Sesión

Transporte

Red

Enlace

Físico

 7 niveles OSI de un sistema de comunicaciones

• En una LAN necesitamos emplear solo dos para realizar la comunicación (...)

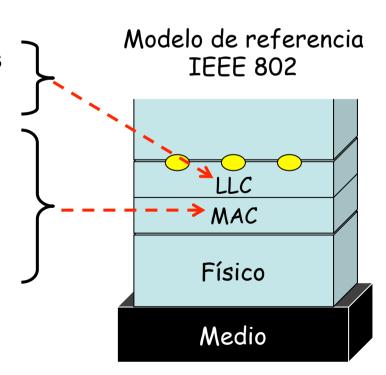
Permite enviar bloques de datos (tramas), controlando errores y el flujo de la información

Cómo se transmiten los bits (la información) por el medio de comunicación físico

Medio

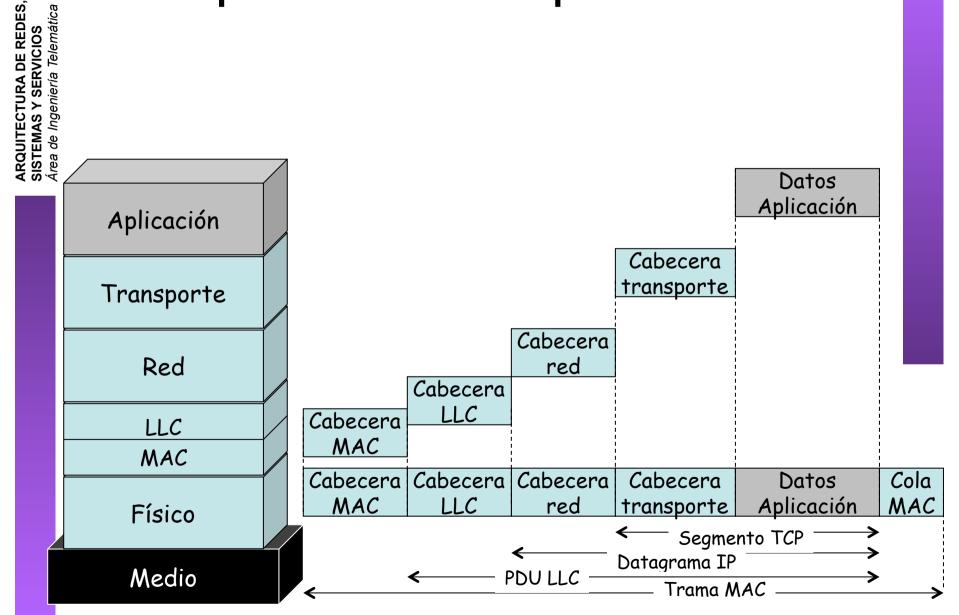
Arquitectura de protocolos

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática • LLC = Logical Link Control Aplicación MAC = Medium Access Control Presentación Sesión Modelo de referencia Transporte **IEEE 802** Punto de acceso al servicio LLC (LSAP) Red LLC Enlace MAC Físico Físico Medio Medio


Arquitectura de protocolos

Capa física

- Codificación/decodificación
- Sincronización
- Transmisión/recepción de bits
- No en esta asignatura


Capa de enlace

- Interfaz con las capas superiores
- Control de errores y de flujo
- Ensamblado de datos en tramas
- Reconocimiento de dirección
- Detección de errores
- Control de acceso al medio

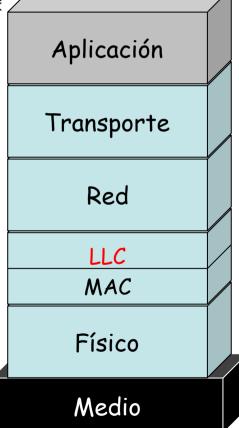
Arquitectura de protocolos

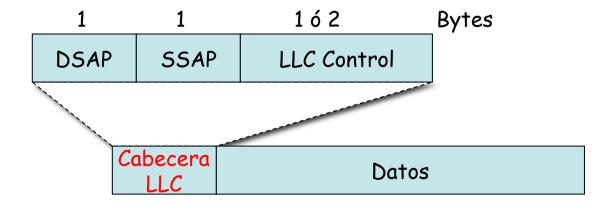
Logical Link Control

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática Aplicación Transporte Red LLC MAC Físico

Medio

- Debe soportar el acceso a un medio compartido
- Pero la mayor parte del trabajo lo lleva el subnivel MAC
- ¿ Direcciones LLC ?
 - SAPs = Service Access Points
 - Hace referencia al protocolo superior
- Servicios ofrecidos:
 - Tipo 1: no hay conexión, ni confirmaciones, ni control de flujo ni recuperación ante errores
 - Tipo 2: orientado a conexión, con confirmaciones
 - Tipo 3: sin conexión, con confirmación




Logical Link Control

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

• PDU LLC

- DSAP = Destination Service Access Point
- SSAP = Source Service Access Point
- LLC Control

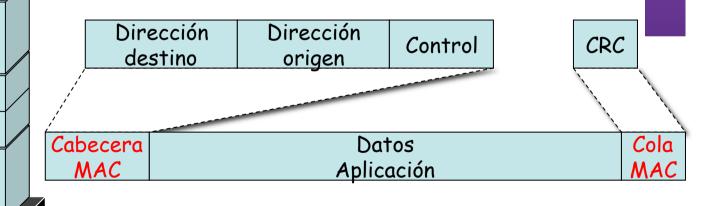
Medium Access Control

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática Aplicación Transporte Red LLC MAC Físico Medio

- LANs y MANs se basan generalmente en un medio compartido
- El subnivel MAC controla el uso de este medio
- ¿ Dónde está el control ?
 - Centralizado en un nodo de la red
 - Mayor control (prioridades, reserva, etc.)
 - Resto de estaciones son más simples
 - Evita problemas de coordinación distribuida
 - Descentralizado
 - No hay un solo punto de fallo
 - No hay un nodo que pueda ser un cuello de botella

Medium Access Control

- ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática Aplicación Transporte Red LLC MAC **Físico** Medio
- ¿ Cómo se lleva a cabo ?
 - Síncronamente (TDM, FDM, etc.)
 - Asíncronamente (según la demanda)
 - Round Robin: eficiente con alta carga
 - Reserva: solicitar con anterioridad
 - Contienda: no hay control que determine de quién es el turno



Medium Access Control

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

PDU MAC

- Dirección MAC destino
- Dirección MAC origen
- Control
- CRC (Cyclic Redundancy Check) o FCS (Frame Check Sequence)
 - Detección y descarte de tramas erróneas

Aplicación

Transporte

Red

LLC

MAC

Físico

Medio

Resumen

- Topologías con ventajas e inconvenientes, apropiadas para diferentes escenarios
- IEEE 802 divide nivel de enlace en subniveles MAC y LLC
- Subnivel MAC se encarga de controlar cuándo enviar