Fragmentación y Reensamblado en IP ICMP

Area de Ingeniería Telemática http://www.tlm.unavarra.es

Arquitectura de Redes, Sistemas y Servicios 3º Ingeniería de Telecomunicación

Temario

- 1. Introducción
- 2. Arquitecturas, protocolos y estándares
- 3. Conmutación de paquetes
- 4. Conmutación de circuitos
- 5. Tecnologías
- 6. Control de acceso al medio en redes de área local
- 7. Servicios de Internet

Temario

- 1. Introducción
- 2. Arquitecturas, protocolos y estándares
- 3. Conmutación de paquetes
 - Arquitectura de protocolos para LANs
 - Ethernet
 - Protocolos de Internet
 - Internetworking
 - Direccionamiento
 - Fragmentación e ICMP. IP en LAN
- 4. Conmutación de circuitos
- 5. Tecnologías
- 6. Control de acceso al medio en redes de área local
- Servicios de Internet

Objetivo

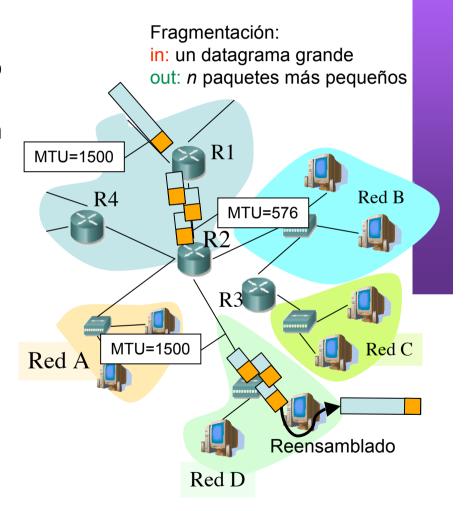
 Completar los conceptos básicos sobre el nivel de red en Internet

Contenido

- Fragmentación y reensamblado
 - Necesidad
 - Implementación
 - Problemas
- ICMP
 - Características generales
 - Condiciones generales de envío
 - Mensajes
- Traceroute

Contenido

- Fragmentación y reensamblado
 - Necesidad
 - Implementación
 - Problemas
- ICMP
 - Características generales
 - Condiciones generales de envío
 - Mensajes
- Traceroute


Fragmentación y Reensamblado

Necesidad

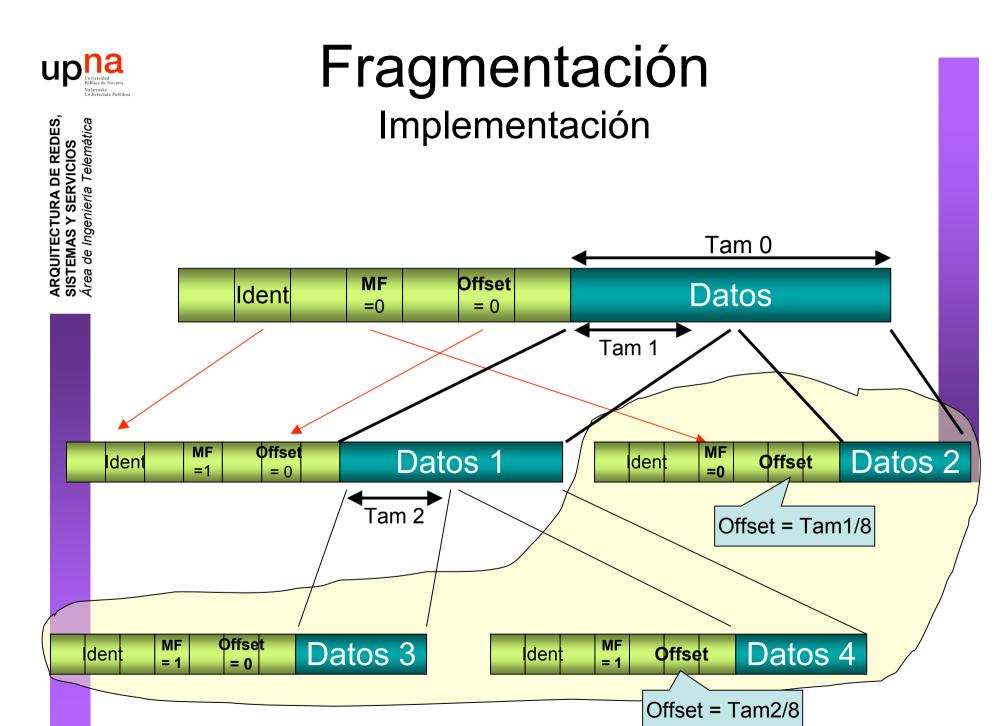
ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- El nivel de enlace impone unos límites al tamaño
- MTU = Maximum Transfer Unit
- Un datagrama IP es dividido dentro de la red (...)
- Un datagrama se convierte en varios paquetes
- Hosts y routers fragmentan
- Los routers NO reensamblan (...)
- Solo el host receptor final reensambla (...)

Red (RFC 1191)	MTU
16Mbps Token Ring	17914
IEEE 802.4	8166
FDDI	4352
Ethernet	1500
IEEE 802.3	1492
X.25	576

Fragmentación y Reensamblado

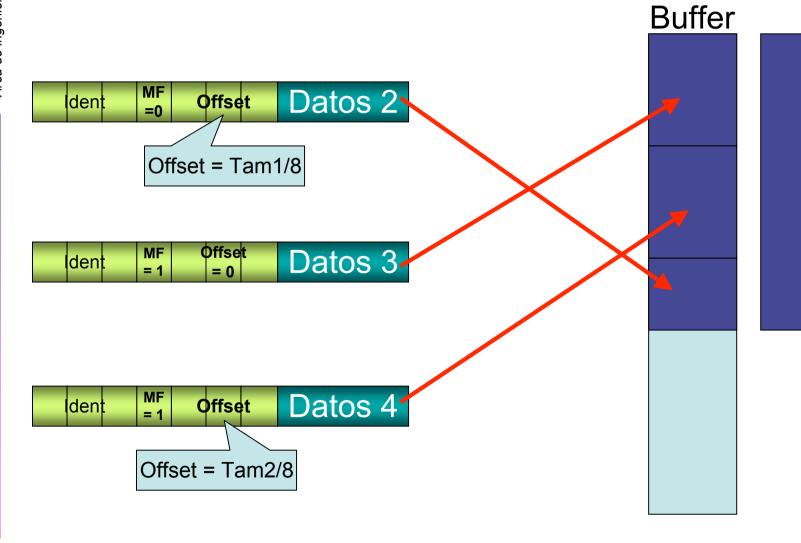
Codificación de la información


ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

- Campos empleados:
 - Identificación
 - Bit MF
 - Fragment offset
- Fragmentos del datagrama:
 - Igual identificación, IP origen,
 IP destino y protocolo
- "Longitud" es la del paquete, no del datagrama
- Ante un primer fragmento ⇒ reservar zona de memoria donde reensamblar
- Debe reservar suficiente para reensamblar al menos datagramas de 576 Bytes

Versión	Header Length	TOS		Longitud	
16-bit identifier			D M F F	13-bit fragmentation offset	
T.	TL	Protocol	He	eade	er checksum
Dirección IP origen					
Dirección IP destino					
[opciones]					
[Datos]					

16


31

Reensamblado

Implementación

Situaciones de "error"

Bit DF:

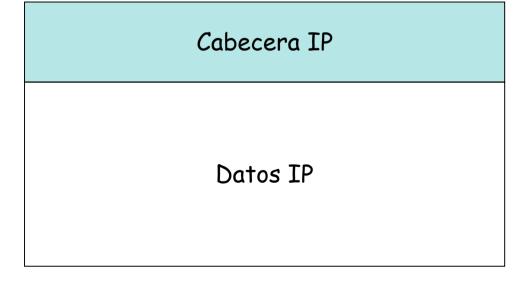
- En la cabecera IP
- DF==1 ⇒ routers no pueden fragmentar el paquete
- (Tam>MTU)&&(DF==1) ⇒ lo descarta y devuelve al host origen un paquete indicando el error (ICMP)

Reensamblado:

- Inicia un timer con el primer fragmento que recibe
- Si caduca el *timer* sin tener todos los fragmentos descarta todo lo recibido y devuelve al origen un paquete indicando el error (ICMP)

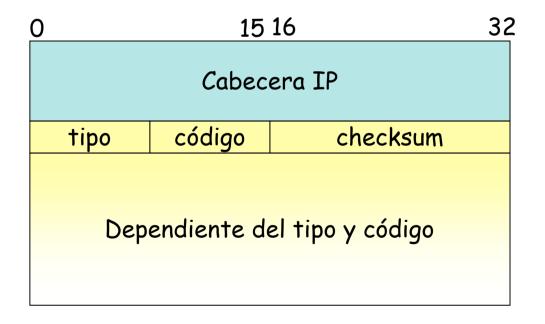
Problemas de la fragmentación

- Menor cociente Datos/Cabeceras
- Añade más carga a los routers (IPv6 la elimina)
- Si se pierde un fragmento:
 - El receptor no puede recomponer el datagrama
 - Tira todos los fragmentos recibidos
- Hasta que no se reciba todo el datagrama no se pueden pasar los datos al nivel de transporte (mayor retardo)

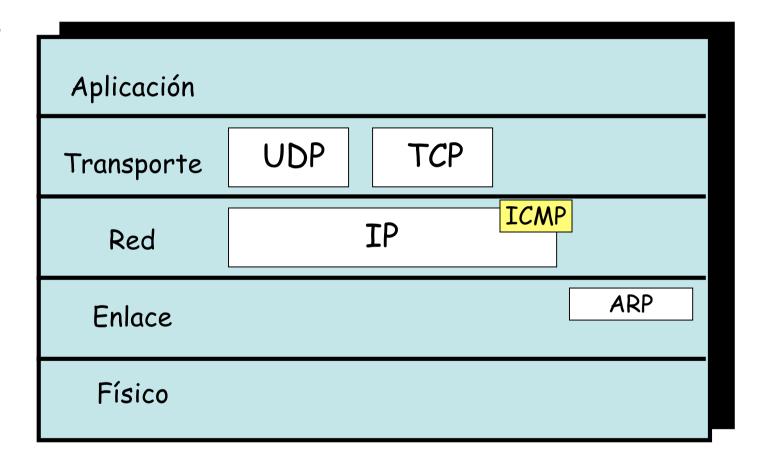

Contenido

- Fragmentación y reensamblado
 - Necesidad
 - Implementación
 - Problemas
- ICMP
 - Características generales
 - Condiciones generales de envío
 - Mensajes
- Traceroute

Características generales


- Internet Control Message Protocol (RFC 792)
- Para comunicar mensajes de error y otra información del nivel de red
- Mensajes transportados dentro de datagramas IP
- El destino es la dirección del paquete IP que generó el error
- Parte del nivel IP
- Estructura general del mensaje (...):

Características generales


- Internet Control Message Protocol (RFC 792)
- Para comunicar mensajes de error y otra información del nivel de red
- Mensajes transportados dentro de datagramas IP
- El destino es la dirección del paquete IP que generó el error
- Parte del nivel IP
- Estructura general del mensaje (...):

up<mark>na</mark> ¿Dónde encaja ICMP en la pila TCP/IP?

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

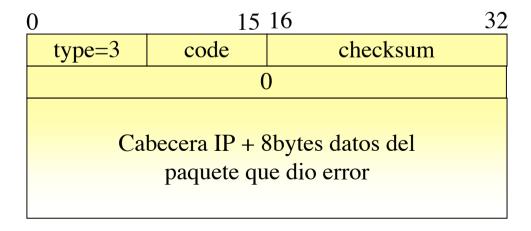
Clases de mensajes ICMP

- Mensajes de Error:
 - Destino inalcanzable
 - Redirect
 - Tiempo excedido
 - Source Quench
 - Problema de parámetros
- Mensajes de pregunta (query):
 - Echo
 - Router Advertisement
 - Timestamp
 - Información
 - Address Mask

Condiciones generales de envío

- Para evitar tormentas de errores
- Nunca se generan ICMPs de error en respuesta a:
 - Un ICMP de error
 - Un datagrama destinado a una IP de broadcast o multicast
 - Un broadcast (o multicast) a nivel de enlace
 - Un fragmento que no sea el primero
 - Un datagrama cuya IP origen no sea single-host: loopback, broadcast, multicast

Mensajes ICMP

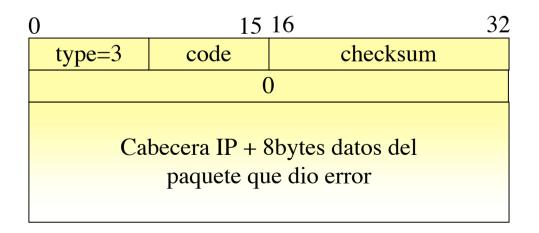

- Echo request/reply (query) (PING)
 - tipo = 8 (request) o 0 (reply), código = 0
 - Servidor debe hacer echo del paquete (incluidos los datos)
 - Obligatorio de implementar (generalmente en el kernel)

0		15 16 32		
	type=8	code	checksum	
	Identificador		Número de secuencia	
Datos (opcional)				

Mensajes ICMP

- Destino inalcanzable (error)
 - tipo = 3
 - Si según la tabla de rutas no se puede llegar al destino, host/router debe enviarlo (...)

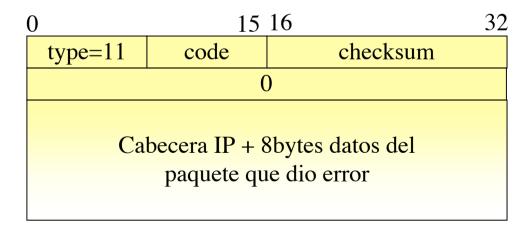
Mensajes ICMP


(Destino inalcanzable)

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS Área de Ingeniería Telemática

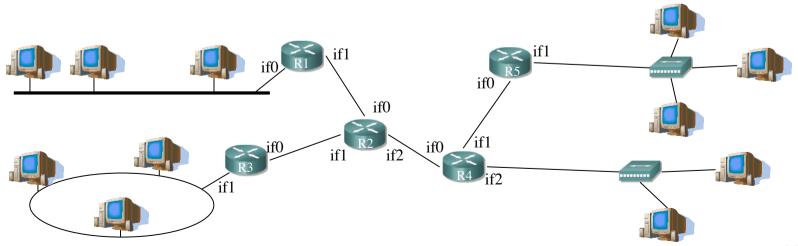
Código:

- 0 = Red destino inalcanzable
- 1 = Host destino inalcanzable
- 2 = Protocolo destino inalcanzable


- 3 = Puerto destino inalcanzable
- 4 = Fragmentación necesaria y DF activo
- 5 = Source route failed

Mensajes ICMP

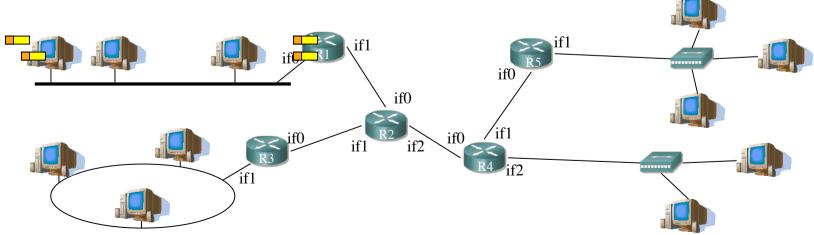
- Tiempo excedido (error)
 - tipo = 11
 - código = 0 (TTL=0 en tránsito), 1 (timeout durante reensamblado, necesita primer paquete)


Contenido

- Fragmentación y reensamblado
 - Necesidad
 - Implementación
 - Problemas
- ICMP
 - Características generales
 - Condiciones generales de envío
 - Mensajes
- Traceroute

Traceroute

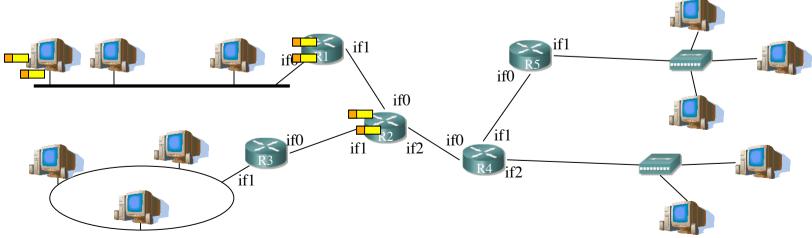
- Permite averiguar el camino entre dos hosts
- Suponiendo que el camino se mantiene entre diferentes paquetes
- Requiere que el destino final soporte UDP
- Requiere que se generen ciertos mensajes ICMP
- Implemented by **Van Jacobson** from a suggestion by Steve Deering. Debugged by a cast of thousands with particularly cogent suggestions or fixes from C. Philip Wood, Tim Seaver, and Ken Adelman.



Traceroute

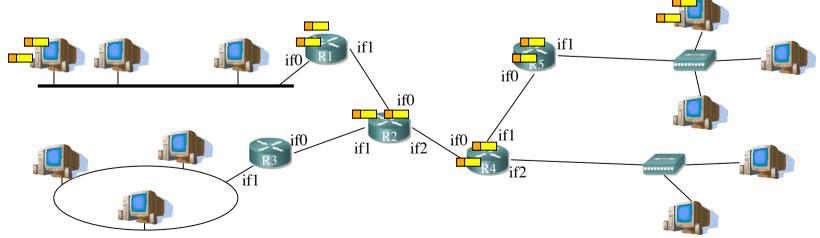
- El host inicial envía un datagrama UDP (...)
 - Dirigido al host final
 - Con TTL = 1
- El primer router decrementa el TTL a 0 (...)

TTL IP IPR1_{if0}


- Tira el paquete
- Devuelve al origen un ICMP de Error Tiempo excedido en tránsito
- Este es un paquete IP con dirección origen la del interfaz de R1 en la red del host (...)

Traceroute

- El host inicial envía un datagrama UDP (...)
 - Dirigido al host final
- Con TTL = 2TTLEl primer router decrementa el TTL a 1 y lo reenvía (...) $\mathtt{IPR1}_{\mathtt{if0}}$ $IPR2_{if0}$
- El segundo router decrementa el TTL a 0 (...)
 - Tira el paquete
 - Devuelve al origen un ICMP de Error Tiempo excedido en tránsito
 - Este es un paquete IP con dirección origen la del interfaz de R2 en dirección hacia el host origen (...)



Traceroute

- Idem con TTL=3 y TTL=4 (...)
- Con TTL suficientemente grande el paquete llega hasta el destino final (...)
- En el destino no hay aplicación esperando paquetes UDP en ese puerto:
 - Lo tira
 - Devuelve al origen un ICMP de Error Puerto destino inalcanzable (....)

ga		
	$\underline{\mathtt{TTL}}$	<u> IP</u>
es	1	$\mathtt{IPR1}_{\mathtt{if0}}$
	2	$\mathtt{IPR2}_{\mathtt{if0}}$
	3	$\mathtt{IPR4}_{\mathtt{if0}}$
ino	4	$\mathtt{IPR5}_{\mathtt{if0}}$
	5	IPhost

Traceroute (Ejemplo)

daniel% traceroute www.berkeley.edu

traceroute to arachne.berkeley.edu (169.229.131.109), 30 hops max, 40 byte packets

- 1 arce-un.red.unavarra.es (130.206.160.1) 1.691 ms 0.438 ms 0.417 ms
- 2 ss-in (130.206.158.25) 1.015 ms 3.091 ms 0.658 ms
- 3 unavarra-router.red.unavarra.es (130.206.158.1) 1.587 ms 1.87 ms 1.506 ms
- 4 fe0-1-2.eb-pamplona0.red.rediris.es (130.206.209.13) 1.49 ms 1.741 ms 1.25 ms
- 5 nav.so2-3-0.eb-bilbao0.red.rediris.es (130.206.240.61) 5.279 ms 4.402 ms 4.398 ms
- 6 pav.so2-0-0.eb-iris2.red.rediris.es (130.206.240.29) 50.039 ms 16.511 ms 16.35 ms
- 7 so0-0-0.eb-iris4.red.rediris.es (130.206.240.2) 16.341 ms 17.982 ms 16.405 ms
- 8 rediris.es1.es.geant.net (62.40.103.61) 118.998 ms 16.741 ms 16.755 ms
- 9 es.it1.it.geant.net (62.40.96.186) 96.679 ms 39.288 ms 39.513 ms
- 10 it.de2.de.geant.net (62.40.96.61) 91.118 ms 48.088 ms 49.83 ms
- 11 abilene-gw.de2.de.geant.net (62.40.103.254) 141.935 ms 141.812 ms 141.716 ms
- 12 atlang-washng.abilene.ucaid.edu (198.32.8.65) 157.505 ms 157.692 ms 164.648 ms
- 13 hstnng-atlang.abilene.ucaid.edu (198.32.8.33) 177.182 ms 177.144 ms 177.201 ms
- 14 losang-hstnng.abilene.ucaid.edu (198.32.8.21) 199.049 ms 198.489 ms *
- 15 hpr-lax-gsr1--abilene-la-10ge.cenic.net (137.164.25.2) 199.004 ms 198.621 ms 284.873 ms
- 16 svl-hpr--lax-hpr-10ge.cenic.net (137.164.25.13) 215.55 ms 218.166 ms 206.364 ms
- 17 hpr-ucb-ge--svl-hpr.cenic.net (137.164.27.134) 210.841 ms 207.409 ms 207.479 ms
- 18 vlan187.inr-201-eva.berkeley.edu (128.32.0.33) 283.445 ms 207.842 ms 207.318 ms
- 19 g5-1.inr-210-srb.berkeley.edu (128.32.255.65) 211.052 ms 207.341 ms 207.408 ms
- 20 arachne.berkeley.edu (169.229.131.109) 207.431 ms 207.451 ms 207.4 ms

Probadlo y ved los paquetes con topdump o ethereal