Campus de Arrosadía Arrosadiko Campusa 31006 Pamplona - Iruñea Tfno. 948 169113, Fax. 948 168924 Email: ayc@unavarra.es

ARQUITECTURA DE REDES, SISTEMAS Y SERVICIOS

3º Ingeniería de Telecomunicación

Conjunto de problemas 4 - Sesiones 17 y 18

- 1. (Homework) Supongamos un conmutador Ethernet al que hay conectadas 3 estaciones de trabajo. Una de ellas hace un ARP que hace referencia a la dirección IP de otra de la misma LAN que está conectada en el mismo conmutador. ¿Qué tramas verá una tercera estación de la LAN que está conectada en un puerto del mismo conmutador?
- 2. Explique qué sucede si el host destino de un datagrama IP recibe varios fragmentos del mismo pero no todos
- 3. En el escenario de la figura 1 el host H1 hace una solicitud de ARP preguntando por la dirección MAC del interfaz de dirección de red IPH2. ¿Qué host/s verán el paquete en el cable? ¿Cuáles lo leerán? ¿Cuáles enviarán una respuesta? ¿Cuáles el contenido de esta/s respuesta/s? ¿Qué host/s verán la respuesta? ¿Cuáles la leerán?

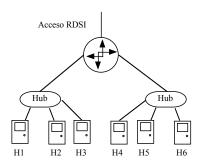


Figura 1.- Problema 3

4. Una pequeña universidad tiene organizada la topología de la red de su campus como se ve en la figura 2. Tiene contratado un acceso a Internet a través del router no etiquetado (al que llamaremos R0). Este router R0 pertenece al ISP (Internet Service Provider). Los routers de la universidad poseen tan solo 2 interfaces y sus escasas opciones de configuración solo permiten especificar las direcciones/redes de cada interfaz y una ruta por defecto. El espacio de direcciones asignado al campus es la red 201.43.128.0/22 y las redes configuradas son las siguientes:

Red A: 201.43.128.0/24, Red B: 201.43.129.0/24, Red C: 201.43.130.0/24, Red D: 192.168.77.0/24, Red E: 192.168.76.128/29

IPRO, if 0=201.43.130.1, IPR1, if 0=201.43.128.1, IPR1, if 1=192.168.76.129, IPR2, if 0=201.43.129.1, IPR2, if 1=192.168.76.130, IPR3, if 0=201.43.130.2, IPR3, if 1=192.168.76.131, IPR4, if 0=192.168.77.1, IPR4, if 1=192.168.76.132

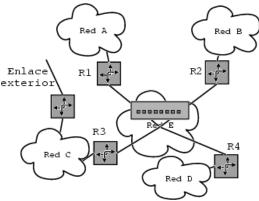


Figura 2.- Problema 4

La ruta por defecto de los routers R1, R2 y R4 es a 192.168.76.131 (IPR3,if1). La de R3 es 201.43.130.1 (IPR0,if0). El router R0 es un poco más flexible y tiene las siguientes rutas:

Destino	Siguiente salto
201.43.128.0/22	201.43.130.2
201.43.130.0/24	interfaz 0
ruta por defecto	enlace punto-a-punto por if1

Tabla 1.- Problema 4

En las redes A y B están conectados todos los ordenadores de laboratorios y despachos. La red D contiene principalmente los servidores de base de datos del servicio administrativo de la universidad. La red E sirve de interconexión de routers y en la red C están los servidores de la universidad tanto hacia el exterior como para la propia universidad (Web, e-mail, etc). Normalmente cada ordenador tiene configurada una ruta por defecto que depende de la red en la que está. Estas rutas son: Red A: IPR1,if0, Red B: IPR2,if0, Red C: IPR0,if0, Red D: IPR4,if0.

- a. Explique con detalle por qué un host en la Red A (201.43.128.15) que quiera mandar un paquete ICMP echo request a un host en la red C (201.43.130.178) no obtiene respuesta. ¿Qué paquetes circularán por la red como consecuencia de este paquete ICMP?
- b. Si pudiera cambiar las tablas de rutas de los routers R1, R2, R3 y R4 (manteniendo el número de entradas en ellas). Podría arreglar el problema de conectividad de la pregunta (a)? En caso de respuesta afirmativa, cómo? En caso de respuesta negativa, por qué?
- c. Se actualiza el router R3 ampliándole la memoria. Ahora es capaz de almacenar al menos un centenar de entradas en su tabla de rutas, no solo una ruta por defecto. Detalle la tabla de rutas que configuraría en esta máquina sin hacer cambios en las demás. (evidentemente el objetivo es que cualquier par de hosts pueda comunicarse)
- 5. Una mediana empresa posee la red de datos que se ve en la figura 9 para todos los ordenadores de sus empleados así como para sus servidores centrales de datos. ¿Cómo afecta la MTU del enlace serie entre R2 y R3 a los mensajes ARP enviados por los PCs de I+D?

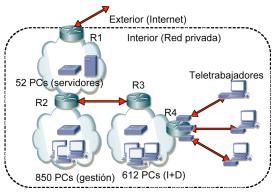


Figura 3.- Problema 5

- 6. Un router de 2 interfaces posee la tabla 2 como su tabla de rutas. El router recibe sendos paquetes IP con dirección IP destino las que aparecen a continuación. Dada su tabla de rutas, explique qué hace con cada uno de esos paquetes y por qué.
 - a. 84.41.136.21
 - b. 84.41.139.3
 - c. 84.41.142.130
 - d. 84.41.133.31
 - e. 84.41.145.45

Destino	Siguiente salto	Interfaz
84.41.136.0/22	84.41.136.1	1
84.41.140.0/24	84.41.136.2	1
84.41.145.0/26	84.41.136.3	1
84.41.145.32/28	84.41.145.1	2

Tabla 2.- Rutas para problema 6