
Introduction

CSMA/CD

Introduction

This tutorial presents detailed examples that illustrate
the modeling and analysis of the well-known Aloha
and CSMA channel access protocols. In this lesson,
you will learn how to

• Construct more advanced protocols

• Design a simple channel interface to a multi-tap
bus

• Execute parametric simulations

• Analyze the simulated results against theoretical
predictions

You will build two models: an Aloha model and a
CSMA model. Because it is the simplest of the
channel access methods, we will build the Aloha
model first.
1

Introduction

The main task is to design models that incorporate the
Aloha random-channel-access method and the
1-persistent carrier-sense-multiple-access (CSMA)
method on a multi-tap bus link, where multiple nodes
are connected through a shared channel. We will
compare the performance of each method.
2

Getting Started

Getting Started

Before designing the models, you may be interested in
an overview of the model hierarchy.

The design strategy for the Aloha and CSMA models
is to employ the same network model. Both network
models will use a common transmitter node model
which sends packets, and a common receiver node
model which performs network monitoring. By
changing the process model attribute of the node
models, new simulations using either Aloha or CSMA
properties can be built quickly. The transmitter node
process models will be unique, whereas the receiver
node process model is generic and will remain
unchanged.

Aloha and CSMA Modeling Hierarchy

Generic Network: cct_net

Generic Receiver
Node Model: cct_rx

Generic Transmitter
Node Model: cct_tx

CSMA Transmitter
Process Model: csma_tx

Aloha Transmitter
Process Model: aloha_tx

Generic Receiver
Process Model: cct_rx

OR
3

Getting Started

Designing the Generic Transmitter Node Model

In theory, the Aloha system could be modeled as just a
simple source generator and a bus transmitter.
However, by designing a more generalized model, you
can reuse it later for the CSMA model.

The transmitter node must generate packets, process
them, and send them on to the bus. This can be
modeled using a simple source processor to generate
packets, another processor to perform any necessary
operations, and a bus transmitter to transmit the
packets on the bus link.

Generic Transmitter Node Model

Bus transmitters also have internal queuing
capability— they will issue all submitted packets onto
the bus in FIFO order.
4

Getting Started

Designing the Aloha Transmitter Node
Process Model

The Aloha transmitter process only has to receive
packets from the generator and send them on to the
transmitter.

The Aloha transmitter process has only one unforced
state: waiting for the arrival of a packet from the
generator. Since the generic transmitter node does not
gather statistics, the aloha_tx process does not need
to initialize or maintain state or global variables of its
own. It does, however, need to retrieve a global
attribute value that defines the number of generated
packets. The transmitter process will retrieve this value
once, before entering the main loop.

The process begins the simulation in a forced
initialization state, then moves to an unforced idle state
where it waits for packets to arrive.

The process needs to be activated with a begin
simulation interrupt so that when the simulation starts,
the FSM executes the forced initialization state and
then waits in the idle state, ready to transition when the
first packet arrives.
5

Getting Started

Intermediate aloha_tx FSM

There is only one distinct event in the aloha_tx FSM,
the arrival of a generated packet. At the unforced idle
state, the packet arrival interrupt can be selectively
detected by an appropriate transition.

Complete aloha_tx FSM

Packet arrival interrupts are the only interrupts
expected, so it is safe to omit a default transition for the
unforced idle state. When a packet arrival interrupt is
delivered, the FSM should perform executives to
acquire and transmit the packet in the tx_pkt state,
then transition back to the idle state.
6

Getting Started

Designing the Generic Receiver Node Model

The generic receiver node model monitors the
movement of packets across the bus.

The next step is to design the generic receiver node
model. The model does not require a generator
because it simply monitors packets moving across the
bus. The node model consists of a bus receiver and a
processor module.

Conceptual Generic Receiver Node Model
7

Getting Started

Designing the Generic Receiver Node
Process Model

The generic receiver node process model is
responsible for handling received packets for
statistics-gathering purposes.

To process received packets for statistics collection,
the cct_rx process needs one unforced state where it
waits to receive collision-free packets (how the
collisions are detected is presented later in this
tutorial). At the end of the simulation, the process
records the channel throughput and channel traffic
values for analysis. Because the receiver node
process manages the statistics-gathering variables,
the process should initialize the variables at the start of
the simulation. This leads to the design shown. Note
the reference to the user-defined C functions
proc_pkt() and record_stats() in the transition
executives (these will be written later).

Complete cct_rx FSM
8

Building the Aloha Model

Building the Aloha Model

The Aloha process and node models will be created
first. These models serve as the basis for an enhanced
model that will be used to represent the CSMA system.

Building the Aloha model involves several steps:

• Creating the Aloha transmitter process model

• Creating a generic transmitter node model

• Creating a generic receiver process model

• Creating a generic receiver node model

• Building the network model
9

Building the Aloha Model

Creating the Aloha Transmitter Process Model

The first part of the Aloha model you will build is the
transmitter process model:

1 Start Modeler if it is not already running.

2 Choose File > New..., then select Process Model
from the pull-down menu. Click OK.

3 Using the Create State toolbar button, place
three states in the workspace.

Create State Toolbar Button

4 Make the following changes to the three states,
from left to right:

4.1 To the first state, change the name attribute
to init and the status as forced.

4.2 To the second state, change the name
attribute to idle; leave the status as
unforced.

4.3 To the third state, change the name attribute
to tx_pkt and the status to forced.
10

Building the Aloha Model

States of the Transmitter Process Model

Next, add the transitions between the states:

1 Draw the three transitions as shown.

Transitions of the Transmitter Process Model

2 For the transition from idle to tx_pkt, change the
condition attribute to PKT_ARVL (using capital
letters). To move the condition label, left-click on
the label and drag it to a new position.

The PKT_ARVL macro determines if an interrupt
received by the process is associated with a packet
arriving on a stream. In this model, interrupts are only
expected on the input stream from the generator, so
the macro does not need to determine which input
stream received the packet.
11

Building the Aloha Model

You will define this macro in the next step.

You are now ready to specify the code for the
process model. Start with the header block:

1 Open the Header Block and enter the code
shown. Save the changes.

/* Input stream from generator module */
#define IN_STRM 0

/* Output stream to bus transmitter module */
#define OUT_STRM 0

/* Conditional macros */
#define PKT_ARVL (op_intrpt_type() == OPC_INTRPT_STRM)

/* Global Variable */
extern int subm_pkts;

2 Save the changes.

The symbolic constants IN_STRM and OUT_STRM
will be used in calls to Kernel Procedures that get
packets from streams or send packets to streams. To
achieve the desired functionality, these stream indices
must be consistent with those defined at the node
level.
12

Building the Aloha Model

Next, enter the state variables:

1 Open the State Variable Block and enter the
following information. The default type, int, is
acceptable.

Values for State Variable Block

2 Click OK to close the dialog box when you are
finished.
13

Building the Aloha Model

The variable max_packet_count will hold the
maximum number of packets to be processed in the
simulation. This will be retrieved from a simulation
attribute and compared with the packet count.

Define the actions for the init state in its enter
executives block:

1 Double-click on the top of the init state to open
the enter executives block and enter the
following code.

/* Get the maximum packet count, */
/* set at simulation run-time */
op_ima_sim_attr_get_int32 ("max packet count",

&max_packet_count);

2 Save your changes.
14

Building the Aloha Model

Also, specify the actions for the tx_pkt state:

1 Double-click on the top of the tx_pkt state to open
the enter executives block, and enter the
following code:

/* Outgoing packet */
Packet *out_pkt;

/* A packet has arrived for transmission. Acquire */
/* the packet from the input stream, send the packet */
/* and update the global submitted packet counter. */
out_pkt = op_pk_get (IN_STRM);
op_pk_send (out_pkt, OUT_STRM);
++subm_pkts;

/* Compare the total number of packets submitted with */
/* the maximum set for this simulation run. If equal */
/* end the simulation run. */
if (subm_pkts == max_packet_count)

{
op_sim_end ("max packet count reached.", "", "", "");
}

2 Save your changes.

The tx_pkt state executive is entered when the
process receives a stream interrupt from the
Simulation Kernel. This interrupt coincides with the
arrival of the generated packet. After completing the
executives of the tx_pkt state, the FSM transitions
15

Building the Aloha Model

back to the idle state. Because there are no other
unforced states in the transition path, the FSM always
re-enters the idle state before the next packet arrives
and waits for the packet.

The cct_rx process model will later declare the global
variable, subm_pkts, to globally accumulate the
number of transmitted packets. Access to this variable
in the aloha_tx process model is gained by declaring it
in the model’s header block using the C language
extern storage class.

Next define the global attribute that will be set at
simulation run-time and loaded into the state variable
max_packet_count.

1 Choose Interfaces > Global Attributes.

2 Enter an attribute “max packet count” into the
dialog box table, as shown:

Defining the Global Attribute

3 Save your changes by clicking on the OK button.
16

Building the Aloha Model

The model is now complete, except for the model
interface attributes.

You must also edit the process interfaces:

1 Choose Interfaces > Process Interfaces.

2 Change the initial value of the begsim intrpt
attribute to enabled.

3 Change the Status of all the attributes to hidden.

You may want to add a comment to describe the
process. When you are finished, click OK to close the
dialog box.

1 Compile the process model. Supply the name
<initials>_aloha_tx.

2 When the process model is finished compiling,
close the Process Model Editor.
17

Building the Aloha Model

Creating the Generic Transmitter Node Model

You’ll now create a node model of a generic transmitter
that can support either Aloha or CSMA.

1 Choose File > New..., then select Node Model
from the pull-down menu. Click OK.

2 Using the appropriate toolbar buttons, create two
processor modules and one bus transmitter
module. (Display the tooltip to verify that you
selected a bus transmitter.)

Modules of the Generic Transmitter Node Model

3 For each module, set the name attribute with the
names shown above.

4 Set the process model attribute for the gen
processor to simple_source.

5 Connect the modules with packet streams as
shown above.
18

Building the Aloha Model

6 Open the packet streams’ attribute dialog boxes
to see that src stream is set to src stream [0]
and dest stream is set to dest stream [0],
conforming to the indices declared in the
<initials>_aloha_tx process model header block.

Because you are interested in assigning different
values to the generator’s interarrival time attribute,
you must promote it so its value can be set more easily
at simulation time.

1 Open the gen processor’s attribute dialog box.

2 Click on Packet Interarrival Time in the left
column to highlight the attribute name, then
right-click and select Promote Attribute to
Higher Level from the pop-up menu.

➥ The word promoted appears in the Value cell
of the attribute.

Promoting the Attribute

3 Close the attribute dialog box.
19

Building the Aloha Model

You also need to set the processor’s attributes
appropriately:

1 Open the attribute dialog box for tx_proc and set
the process model attribute to
<initials>_aloha_tx.

2 Close the dialog box.
20

Building the Aloha Model

Enhancing the Generic Transmitter Node Model

The generic transmitter node model you just created
has the functionality necessary for the underlying
aloha_tx process model. However, because you plan
to exchange CSMA for the Aloha process model, it is
useful to build hooks for the anticipated
enhancements.

The enhancements will consist of a bus receiver
module (to support the eventual full duplex capability
of the CSMA protocol), and a sink processor to accept
and destroy packets received by the receiver module.
The enhancements also include an inactive (disabled)
statistic wire which, when enabled in the CSMA model,
will both inform the process (contained in the tx_proc
module) of the busy status of the channel, as well as
provide interrupts to the process when the channel
condition changes.

The Enhanced Transmitter Node Model
21

Building the Aloha Model

Add the following features to the node model:

1 Using the appropriate toolbar buttons, add one
processor module and one bus receiver module.

Adding Modules

2 Change the name of the new processor module
to sink and the name of the bus receiver to
bus_rx.

3 Connect the new modules with a packet stream
as shown.

4 Using the Create Statistic Wire toolbar button,
connect the bus_rx module with the tx_proc
module.
22

Building the Aloha Model

Adding a Statistic Wire

5 Open the attribute dialog box for the statistic
wire and change both the rising edge trigger
and falling edge trigger attributes to disabled.
Close the dialog box when finished.

Double-check the module connectivity to make sure all
objects in the model have been connected in the
correct order:

1 Right-click on the tx_proc module and choose
Show Connectivity from the Object pop-up
menu. The objects should be connected as
shown in the following figure.

Checking Connectivity
23

Building the Aloha Model

2 If the connections do not match the figure, modify
the connectors as follows:

2.1 Right-click on the packet stream between the
gen and tx_proc modules.

2.2 Choose Edit Attributes.

2.3 Change the value of the src stream attribute
to src stream [0].

2.4 Click OK to close the Attributes dialog box.

2.5 Right-click on the statistic wire between the
bus_rx and tx_proc modules.

2.6 Choose Edit Attributes.

2.7 Change the value of the dest stat attribute to
instat [0].

2.8 Click OK to close the Attributes dialog box.

Next, define the interface attributes and write the
completed model to disk.

1 Choose Interfaces > Node Interfaces.
24

Building the Aloha Model

2 In the Node Types table, change the Supported
value to no for the mobile and satellite types.

3 Change the Status of all the attributes to hidden,
except for the one with promoted status,
gen.Packet Interarrival Time.

4 If you would like, add a comment to describe the
node. When you are finished, click OK to save the
changes.

5 Save the model as <initials>_cct_tx and close
the Node Editor.
25

Building the Aloha Model

Creating the Generic Receiver Process and Node
Models

Next, you can create the generic receiver process and
node models. Since the sole purpose of the receiver
process is to count packets and record statistics, it can
be used to monitor network performance whether the
packets are transmitted in accordance with the Aloha
or the CSMA channel access methods.

1 Choose File > New..., then select Process Model
from the pull-down menu. Click OK.

2 Using the Create State toolbar button, place two
states in the tool window.

3 For the initial state, change the name attribute to
init and the status to forced.

4 For the other state, change the name attribute to
idle. (Leave the status as unforced.)
26

Building the Aloha Model

Draw the five state transitions shown in the following
figure.

Adding Transitions to the Generic Receiver Node

1 For the first (top) transition between the states,
change the condition attribute to PKT_RCVD
and the executive attribute to proc_pkt().

2 For the second (bottom) transition between the
states, change the condition attribute to
END_SIM and the executive attribute to
record_stats().

3 For the first (top) transition from idle back to itself,
change the condition attribute to PKT_RCVD
and the executive attribute to proc_pkt().
27

Building the Aloha Model

4 For the second (middle) transition from idle back
to itself, change the condition attribute to
default.

5 For the third (bottom) transition from idle back to
itself, change the condition attribute to END_SIM
and the executive attribute to record_stats().

Next, enter the code for the header block and the state
variables.

1 Using the appropriate toolbar button, open the
Header Block and type in the definitions shown.

/* Input stream from bus receiver */
#define IN_STRM 0

/*Conditional macros */
#define PKT_RCVD (op_intrpt_type () == OPC_INTRPT_STRM)
#define END_SIM (op_intrpt_type () == OPC_INTRPT_ENDSIM)

/* Global variable */
int subm_pkts = 0;

2 Save the header block.

The index for the input stream from the bus receiver
module (IN_STRM) is defined here. The PKT_RCVD
macro determines if the interrupt delivered to the
process is a stream interrupt. Only one kind of stream
28

Building the Aloha Model

interrupt is ever expected, so no further qualifications
are necessary. The END_SIM macro determines if the
interrupt received by the process is associated with an
end-of-simulation interrupt from the Simulation Kernel.

The global variable subm_pkts is used so that all
transmitting nodes can contribute their individual
transmission attempts to this accumulator. Declaring a
variable in a process model header block causes it to
behave as a global variable within the executable
simulation.

The generic receiver process uses the rcvd_pkts
state variable to keep track of the number of valid
received packets. Define this variable as follows:

1 Open the state variables block and define the
following variable:

Defining the rcvd_pkts State Variable

2 Save the state variables block.
29

Building the Aloha Model

Next, enter the code that defines the functionality of the
process model.

1 Open the function block and enter the following
code:

/* This function gets the received packet, destroys */
/* it, and logs the incremented received packet total*/
static void proc_pkt (void)

{
Packet* in_pkt;
FIN (proc_pkt());
/* Get packet from bus receiver input stream */
in_pkt = op_pk_get (IN_STRM);

/*Destroy the received packet */
op_pk_destroy (in_pkt);

/* Increment the count of received packet */
++rcvd_pkts;
FOUT;
}

/* This function writes the end-of-simulation channel */
/* traffic and channel throughput statistics to a */
/* scalar file */
static void record_stats (void)

{
double cur_time;
FIN (record_stats());
cur_time = op_sim_time();
/* Record final statistics */
op_stat_scalar_write ("Channel Traffic G",

(double) subm_pkts / cur_time);
30

Building the Aloha Model

op_stat_scalar_write ("Channel Throughput S",
(double) rcvd_pkts / cur_time);

FOUT;
}

2 Save the function block.

As defined in the function block earlier, the proc_pkt()
function acquires each received packet as it arrives,
destroys it, and increments the count of received
packets. The record_stats() function is called when
the simulation terminates.

The op_stat_scalar_write function sends the channel
throughput and traffic data to a scalar file that you will
specify when you configure the simulation.

The init state initializes the state variable used to count
received packets. Define it as follows:

1 Double-click on the top of the init state to open
the enter executives block and enter the
following code:

/* Initialize accumulator */
rcvd_pkts = 0;

2 Save the enter executives.
31

Building the Aloha Model

Finally, you can define the process interfaces.

1 Choose Interfaces > Process Interfaces.

2 Change the initial value of the endsim intrpt
attribute to enabled.

3 Change the Status of all the attributes to hidden.

Hiding Attributes

4 If you want, add a comment to describe the
process then click OK to save your changes.

Now compile the model.

1 Click on the Compile Process Model toolbar
button.

2 Supply the file name <initials>_cct_rx and click
on the Save button.

3 Close the compilation dialog box and the Process
Model Editor.
32

Building the Aloha Model

Creating the Generic Receiver Node Model

The next step is to create a generic receiver node
model.

1 Choose File > New..., then select Node Model
from the pull-down menu. Click OK.

2 Using the appropriate toolbar buttons, create one
processor module and one bus receiver module.
(Display the tooltip to verify that you selected a
bus receiver.)

Modules of the Generic Receiver Node Model

3 For each module, change the name attribute as
shown.

4 Connect the modules with a packet stream as
shown.

The input stream index defaults to stream 0,
conforming to the index declared in the cct_rx
process model header block.
33

Building the Aloha Model

5 Open the processor’s attribute dialog box and set
the process model attribute to <initials>_cct_rx.
Close the dialog box when finished.

The generic receiver node model is now complete,
except for the interface attributes.

1 Choose Interfaces > Node Interfaces.

2 In the Node Types table, change the Supported
value to no for the mobile and satellite types.

3 In the Attributes table, change the Status of all
the attributes to hidden.

Hiding Attributes

4 If you wish, add a comment to describe the node
model. When you are finished, click OK to exit the
dialog box.

5 Save the node model as <initials>_cct_rx, then
close the Node Model Editor.
34

Building the Aloha Model

Creating a New Link Model

The behavior of a bus link is defined by its Transceiver
Pipeline stages. The pipeline is a series of C or C++
procedures which can be modified to customize the link
model.

For this lesson, you will create a custom bus link model
whose pipeline stages use the default bus models,
denoted by the dbu_ model prefix. The following table
lists pipeline stages by function.

Bus Transceiver Pipeline Model Stages

Model Function

txdel Computes the transmission delay associated with the
transmission of a packet over a bus link
(transmission delay is the time required to transmit
the packet at the bit rate defined in the relevant bus
transmitter module).

closure Determines the connectivity between any two
stations on the bus.

propdel Calculates the propagation delay between a given
transmitter and a receiver.

coll Determines whether a packet has collided on the
bus.

error Calculates the number of bit errors in a packet.

ecc Rejects packets exceeding the error correction
threshold as well as any collided packets.
35

Building the Aloha Model

To create a new bus link model:

1 Choose File > New..., then select Link Model
from the pull-down menu. Click OK.

2 In the Supported Link Types table, change the
Supported value to no for the ptsimp and ptdup
types.

Modifying the Link Types Supported

This link model supports only the bus and bus tap
types.

3 If you wish, add a comment to describe the link.

4 Save the file as <initials>_cct_link and close the
Link Model Editor.
36

Building the Aloha Model

Creating the Network Model

The network model will be built so that it can be used
when analyzing both the Aloha and CSMA protocols.
This will be done by defining the nodes so that they
reference the generic node models, and later changing
the referenced process models at the node level.

The analytical Aloha model assumes that packets are
always introduced into the network at exponentially
distributed interarrival times. However, in this tutorial,
the network model has a finite number of nodes that
hold packets in their buffers until the previous
outstanding transaction finishes. To closely follow the
analytical model’s assumptions, there must be a large
number of transmitter nodes on the bus.

The network model will be constructed within a subnet
so that a small-scale coordinate system can be used.

1 Choose File > New..., then select Project from
the pull-down menu. Click OK.

2 Name the project <initials>_cct_network and
the scenario aloha, then click OK.

3 In the Startup Wizard, use the following settings:
37

Building the Aloha Model

Startup Wizard Settings

To build your network more easily, you need a custom
palette that has the necessary objects. To create the
palette:

1 In the object palette, click on the
Configure Palette… button.

2 In the Configure Palette dialog box, click Clear.

➥ All objects except the subnet are removed from
the palette If you have the Wireless module
installed, you will also see the mobile and
satellite subnets.

3 Click on the Link Models button, then add
<initials>_cct_link from the list of available link
models. Click OK to close the dialog box when
you are finished.

Dialog Box Name Value

Initial Topology Default value: Create empty
scenario

Choose Network Scale Office
(“Use metric units” selected)

Specify Size 700 x 700 Meters

Select Technologies None

Review Check values, then click Finish
38

Building the Aloha Model

4 Click on the Node Models button, then add
<initials>_cct_rx and <initials>_cct_tx from the
list of available node models. Click OK to close
the dialog box when you are finished.

5 Save the object palette by clicking on the
Save As... button in the Configure Palette dialog
box. Use <initials>_cct as the file name.

6 Click OK to close the Configure Palette dialog
box.

➥ The <initials>_cct Object Palette is ready for
use.

Instead of creating the entire bus network by hand, you
can use rapid configuration to build it quickly:

1 Choose Topology > Rapid Configuration...

2 Select Bus from the menu of available
configurations, then click OK...

3 Use the values shown in the following figure to
complete the Rapid Configuration: Bus dialog
box. Most of the values will be the same, but your
models will be named <initials>_cct_tx and
<initials>_cct_link.
39

Building the Aloha Model

Rapid Configuration: Bus Dialog Box

4 Click OK when all the values are entered.

➥ The network is drawn in the workspace.

Bus Network Created
40

Building the Aloha Model

This network still needs a receiver node. To add this
node and connect it to the network:

1 Click and drag the receiver node
<initials>_cct_rx from the object palette into the
left side of the workspace.

2 Click on the <initials>_cct_link tap link in the
palette. Be sure to use the tap link.

Bus Tap Icon

3 Draw a tap from the bus to the receiver node. Be
sure to start at the bus. Drawing the tap from the
node to the bus might produce different results.

Drawing the Tap

4 Verify that the completed bus model looks like
this:

Starting at the bus, draw a tap
to the receiver node
41

Building the Aloha Model

Completed Bus Model

5 Save the model with the default name,
<initials>_cct_network, and close the object
palette.

Do not exit the Project Editor.
42

Building the Aloha Model

Executing the Aloha Simulation

The goal of this lesson is to observe how the
performance of the protocols varies as a function of
channel traffic. The interarrival time input parameter
will be varied in a series of simulations to produce
different levels of traffic and, therefore, different levels
of throughput. You will run 12 simulations, each with a
different interarrival time value, analyze the results,
and draw conclusions.
43

Building the Aloha Model

Importing and Configuring the Simulation Sequence

1 Choose Scenarios > Scenario Components >
Import...

2 Select Simulation Sequence from the pull-down
menu, then select cct_network-CSMA.

3 Save the project.

4 Choose DES > Configure/Run Discrete Event
Simulation (Advanced).

➥ The Simulation Set dialog box opens. Notice
that it contains an icon with two arrows,
indicating a simulation sequence with multiple
simulations. This is the file you imported.

Simulation Sequence Icon

Note: You would normally open the Simulation
Sequence Editor—DES > Configure/Run
Discrete Event Simulation (Advanced)—and
create a simulation sequence file with specific
settings. To save time, a nearly-complete file has
been provided. However, you still need to specify
an output scalar file which collates the scalar
results produced by the 12 simulations.
44

Building the Aloha Model

5 Right-click on the simulation sequence icon and
select Edit Attributes.

6 Click on the Execution tree node, then the
Advanced tree node.

➥ The Application page appears

7 Verify that the Network model is set to
<initials>_cct_network-aloha.

8 Click on the Outputs tree node, then the Statistics
Collection tree node.

9 Set Probe file to <NONE>. You do not need to
create or specify a Probe file. The
op_stat_scalar_write function and the scalar file
substitute for the Probe file.

10 Set the Scalar file to <your initials>_cct_a.

➥ This file will collect the output of the
op_stat_scalar_write function you included in
the function block of the <initials>_cct_rx
model.

If the output scalar file <initials>_cct_a does not
exist when the simulation sequence begins, one
will be created so that scalar results may be
recorded. If the file already exists, the simulation
executables will append their scalar results to this
45

Building the Aloha Model

file. To avoid viewing obsolete results that might
already exist in a similarly named file, the output
scalar file <initials>_cct_a must be deleted if it
exists.

11 Check the Clear scalar file before running
simulation set check box.

12 Click on the Inputs tree node, then the Global
Attributes node, and verify that max packet
count is 1000.

13 Click on the Object Attributes tree node.

➥ In the Value column, notice the 12 values that
have been set for the attribute
Office Network.*.gen.Packet Interarrival
Time.

14 Click Yes to save changes and close the
Simulation Set dialog box.

15 Choose File > Save.
46

Building the Aloha Model

The simulation can now be executed. Because the
simulation sequence executes many individual
simulations, the total execution time might be several
minutes.

1 Click on the Execute Simulation Sequence
toolbar button.

Execute Simulation Sequence Toolbar Button

2 Click Yes in the Confirm Execution dialog box. A
sequence composed of many runs may be
time-consuming to execute, and this dialog box
gives you the option of deferring the process.

Confirm Execution Dialog Box

➥ The 12 simulations display their progress as
they execute. Any simulation run that
generates 1000 packets (the value of max
packet count) will terminate with a message
similar to the one in the following figure:
47

Building the Aloha Model

Simulation Terminates if max packet count is reached

3 When the simulations are complete, close the
Simulation Sequence dialog box and the
Simulation Sequence Editor. If you had problems,
see "Troubleshooting Modeler Tutorials".
48

Analyzing the Aloha Results

Analyzing the Aloha Results

Aloha channel performance can be measured
according to the number of successfully received
packets as a function of the packets submitted,
regardless of whether the packets are original or
retransmitted. In this network, channel throughput is
a typical measurement of network performance.

The results of each simulation are stored as two scalar
values in the output scalar file, allowing you to view the
network’s performance as a function of an input
parameter rather than a function of time. The channel
throughput as a function of channel traffic across all of
the simulations can be viewed. Because these are
scalar results, you must use the Analysis Configuration
Editor.

To open the scalar output file:

1 In the Project Editor, choose File > New..., then
select Analysis Configuration from the
pull-down menu. Click OK.

➥ The Analysis Configuration Editor opens.

2 Choose File > Load Output Scalar File...
49

Analyzing the Aloha Results

3 Select <initials>_cct_a from the list of available
files. There will be no indication that the file is
selected.

Draw the scalar panel:

1 Click on the Create a Graph of Two Scalars
toolbar button.

Create a Graph of Two Scalars Toolbar Button

2 Select the horizontal variable Channel Traffic G
first, then select the vertical variable
Channel Throughput S from the menu of
available scalars that appears.

Select Scalar Panel Data Dialog Box
50

Analyzing the Aloha Results

3 Click OK.

➥ The scalar graph appears in the workspace.
Your graph should resemble the one in the
following figure:

Aloha Protocol: Channel Throughput as a Function of Channel
Traffic

Theoretical analyses have shown that a pure Aloha
system has a channel throughput S as a function of
channel traffic G given by S = Ge-2G. This relationship
gives a maximum channel throughput of
Smax = 1/2e ≈ 0.18.

Maximum
throughput
51

Analyzing the Aloha Results

At low traffic levels, collisions seldom occur. At high
traffic levels, the channel is overwhelmed and
excessive collisions prevent packets from being
successfully received. This behavior is amply
demonstrated by the simulation results. In particular,
the maximum throughput is achieved near G = 0.5 and
is close to the expected value of 0.18.

The theoretical results assume an essentially infinite
number of sources to eliminate the buffering effects
which emerge in a real network. The analytical model
also assumes that the system is in an ideal steady
state condition. Any differences in the measured
performance of this model and the analytical models
can be attributed to peculiarities of the random number
seeds selected for individual simulations (which can be
fixed by using multiple seeds) and the real world
limitations (including finite simulation time and finite
number of nodes) imposed by the models.

When you are finished viewing the graph, close the
graph panel and the Analysis Configuration Editor.
52

Adding Deference

Adding Deference

The performance of the Aloha random access protocol
can be enhanced by adding a carrier sense capability.
The carrier sense capability is employed in the classical
CSMA protocol, which requires a source node to sense
the channel and determine that it is free before
committing to a transmission.

You can enhance the existing <initials>_aloha_tx
process model so that the process waits until the
channel is free before transmitting a packet.

In the Project Editor, choose File > Recent Files >
Process Models and select the <initials>_aloha_tx
model.

Modify the states and transitions so that the model
appears as shown in the following figure.
53

Adding Deference

The CSMA Process Model

1 Create a new state and name it wt_free.

2 Create a transition from wt_free to tx_pkt, and
change the condition to CH_GOES_FREE.

3 Create a transition from the wt_free state back to
itself and set the condition to default.

4 Create a transition from the idle state to wt_free
and change the condition to PKT_ARVL &&
!FREE.
54

Adding Deference

5 Add a transition from the idle state back to itself
with a condition of default.

6 Change the condition on the transition from idle
state to the tx_pkt state to PKT_ARVL && FREE.

7 Change the unconditional transition from tx_pkt
to idle to conditional by setting the condition
attribute to default.

8 Create a transition from tx_pkt back to itself, and
set the condition to PKTS_QUEUED && FREE.

9 Finally, create a transition from tx_pkt to wt_free
and set the condition to PKTS_QUEUED &&
!FREE.

Remember, you can move a condition label by
left-clicking on the label and dragging it to a new
position.
55

Adding Deference

Editing the Header Block

You must change the header block so that the process
verifies that the channel is free before transmitting. For
the process to send a packet, it must first confirm that
the channel is free by using the Kernel Procedure
op_stat_local_read() to read the channel’s busy
statistic. If the channel is not free, the process enters
the state wt_free until a “channel goes free” interrupt
is received.

At the node level, the underlying statistic wire is
triggered when the busy statistic changes to 0.0. The
triggering is activated by enabling the wire’s falling
edge trigger attribute.

1 Add the following lines to the end of the process
model header block.

/* input statistic indices */
#define CH_BUSY_STAT 0

/* Conditional macros */
#define FREE (op_stat_local_read (CH_BUSY_STAT) == 0.0)
#define PKTS_QUEUED (!op_strm_empty (IN_STRM))
#define CH_GOES_FREE (op_intrpt_type () == \

OPC_INTRPT_STAT)

2 Save the header block.
56

Adding Deference

3 Choose File > Save As... and rename the model
<initials>_csma_tx.

4 Compile the model, then close the Process
Editor.
57

Adding Deference

Enhancing the Generic Transmitter Node Model

You can enhance the generic transmitter node model
so that the bus receiver module delivers a falling edge
statistic interrupt to the processor module whenever
the receiver busy statistic changes from “busy” (1.0) to
“free” (0.0).

To enhance the generic transmitter node model so that
it supports CSMA:

1 Select File > Recent Files > Node Model and
select <initials>_cct_tx.

2 Right-click on the statistic wire and choose Edit
Attributes from the pop-up menu. Set the falling
edge trigger attribute to enabled. Click OK.

3 Open the Attributes dialog box for the tx_proc
processor module and change the process
model attribute to <initials>_csma_tx. Close the
dialog box.

➥ The processor now uses a process model
which acts on channel busy statistic interrupts
delivered by the receiver module.

4 Choose File > Save As... rename the model
<initials>_cct_csma_tx. Close the Node Editor.
58

Adding Deference

Redefining the Network Model

Now that you have modified the appropriate models to
support CSMA, you need to change the network
model to use the new models. Instead of creating an
entirely new model, you can duplicate the existing
scenario (including the network model) and make the
appropriate changes.

1 In the Project Editor, choose Scenarios >
Duplicate Scenario... and name the new
scenario CSMA.

The only change to the network model is to use the
new CSMA transmitter nodes.

1 Add the <initials>_cct_csma_tx node model to
your object palette and save the palette with the
default name.

2 Right-click on one of the transmitter nodes and
choose Select Similar Nodes.

➥ All 20 transmitter nodes are selected.

3 Right-click on any of the selected nodes and
choose Edit Attributes from the pop-up menu.

4 Check Apply changes to selected objects.
59

Adding Deference

5 Change the model attribute to
<initials>_cct_csma_tx, then click OK.

➥ A dialog box appears to warn you that the
change cannot be undone.

6 Click Yes.

➥ The node models are changed to
<initials>_cct_csma_tx. The phrase “20
objects changed” appears in the message
buffer.
60

Adding Deference

Configuring CSMA Simulations

Configure a series of simulations for the CSMA model.

1 Save the project.

2 Choose DES > Configure/Run Discrete Event
Simulation (Advanced).

3 Right-click on the simulation set and choose
Edit Attributes.

4 Change the Seed to 11.

5 Click the Outputs tree node, then the Statistics
Collection node, and change the Scalar file to
<initials>_cct_c.

6 Set Probe file to <NONE>. Click OK to close the
dialog box.

7 Save the simulation sequence file (you do not
have to rename it because it was duplicated and
renamed when you duplicated the scenario).

8 Execute the simulation. It may take a few minutes
to run the 12 simulations. When they complete,
close the Simulation Sequence Editor.
61

Adding Deference

Analyzing the CSMA Results

View the results.

1 In the Project Editor, choose File > New..., then
select Analysis Configuration from the
pull-down menu. Click OK.

2 In the Analysis Configuration Editor, choose
File > Load Output Scalar File...

3 Select <initials>_cct_c from the list of available
files.

4 Click on the Create a Graph of Two Scalars
toolbar button.

5 In the Select Scalar Panel Data dialog box,
select the horizontal variable Channel Traffic G
first, then select Channel Throughput S as the
vertical variable, then click OK.

Select Scalar Panel Data Dialog Box

➥ Your graph should resemble the one in the
following figure:
62

Adding Deference

CSMA Protocol: Channel Throughput as a Function of Channel
Traffic

The CSMA protocol achieves a maximum channel
throughput of about 0.5.

Maximum
throughput
63

Adding Deference

Viewing Both Results on the Same Graph

Your goal is to compare the Aloha and CSMA
protocols. The easiest way to do so is to display both
traces on the same graph.

To view both results on a single graph panel, you will
first create a scalar graph for the Aloha results, then
create a vector graph that displays both results.

First, create a scalar graph for the Aloha results.

1 Choose File > Load Output Scalar File...

2 Select <initials>_cct_a from the menu.

3 Click on the Create a Graph of Two Scalars
toolbar button.

4 Select the horizontal variable Channel Traffic G
first, then select the vertical variable Channel
Throughput S from the menu of available scalars
that pops up. Click OK.

➥ Your graph should resemble the following one:
64

Adding Deference

Aloha Protocol: Channel Throughput as a Function of Channel
Traffic

The Aloha protocol achieves a maximum channel
throughput of about 0.185.

Now, create a vector graph that displays both results.

1 Choose Panels > Create Vector Panel...

2 Select the Displayed Panel Graphs tab, then
open the Displayed Statistics treeview and
select both displayed statistics.

3 Change the display mode to Overlaid Statistics.

Maximum
throughput
65

Adding Deference

Selecting the “Overlaid Statistics” Filter

4 Click Show.

➥ The graph of the two scalars should resemble
the following graph:
66

Adding Deference

Aloha and CSMA Protocols Compared
67

Adding Deference

Renaming the Traces

Because both the Aloha and CSMA simulation
executables used the same label in the
op_stat_scalar_write() Kernel Procedure, both traces
are called Channel Throughput S. These traces can
be renamed to be more informative.

1 Display the Edit Graph Properties dialog box by
right-clicking on the multiple vector graph and
selecting Edit Graph Properties from the pop-up
menu. Be sure to click on the graph and not on
the panel (the area around the graph).

➥ Notice the pull-down menu of active traces in
the top section of the dialog box.

Active Traces Pull-down Menu

2 Click and hold the pull-down menu to see the list
of active traces. Both are named Channel
Throughput S. Which is the CSMA trace and
which the Aloha trace? In this pull-down menu,
traces are listed in the order in which they were
added to the multi-trace graph. The first trace
listed is the CSMA trace.
68

Adding Deference

3 Change the label for the CSMA trace:

3.1 Make sure the pull-down menu shows the
first trace.

3.2 Change Custom Title to CSMA Channel
Throughput S.

3.3 Click on the Apply button at the bottom of
the dialog box.

4 Change the label for the Aloha trace:

4.1 Select the second active trace listed in the
pull-down menu (it is still called
Channel Throughput S).

4.2 Change Custom Title to Aloha Channel
Throughput S.

5 Click OK.

➥ The graph should appear as follows:
69

Adding Deference

Renamed Traces Overlaid

The CSMA protocol is shown to be superior to the
Aloha protocol at all channel traffic loads.

The theoretical channel throughput S as a
function of channel traffic G in a 1-persistent
CSMA channel with negligible propagation delay
is given by S=G(1+G)e-G/(G+e-G). This formula
predicts a maximum throughput of approximately
0.5 at a channel traffic of approximately 1.0.
Although the simulations are brief and limited, the
results support this prediction.

6 Close the graphs and the Analysis Configuration
Editor.
70

Adding Collision Detection and Backoff

Adding Collision Detection and Backoff

If a node has full-duplex capability, it can both transmit
and monitor a connected bus link at the same time.
This capability can be modeled using the Ethernet
protocol.

A node with full-duplex capability can both transmit
and ‘listen’ on the line to determine whether a collision
condition exists. This operational mode is commonly
referred to as Carrier-Sense Multiple Access with
Collision Detection (or CSMA/CD). This is practiced by
the commercial protocol Ethernet, and is accurately
modeled by an OPNET-supplied example model.

Because Ethernet is a fairly sophisticated model, you
will not build it yourself. Instead, the section provides a
guided tour of the standard Ethernet process, node,
and network models.
71

Adding Collision Detection and Backoff

The ethcoax_net Network Model

The ethcoax_net network model consists of a
multi-tap bus network populated by eight nodes. The
nodes employ the node model ethcoax_station_adv.

The ethcoax_net Network Model
72

Adding Collision Detection and Backoff

The ethcoax_station_adv Node Model

The ethcoax_station_adv node model is significantly
more complicated than the Aloha or CSMA node
models. It has four processor modules, a queue
module which performs the bulk of the channel access
processing, and a pair of bus receiver and transmitter
modules.

The ethcoax_station_adv node model provides part
of the functionality associated with the OSI Data Link
Layer called the Media Access Control (MAC)
sublayer. The functions of the individual modules are
discussed in the following paragraphs.

The ethcoax_station_adv Node Model
73

Adding Collision Detection and Backoff

The bus_tx and bus_rx modules serve as the bus link
interface. These modules are set to transmit and
receive at a data rate of 10 Mbits/second, the standard
data rate used in an Ethernet network.

The sink processor represents higher layers and
simply accepts incoming packets which have been
processed through the mac process.

The defer processor independently monitors the link’s
condition and maintains a deference flag which the
mac process reads over a statistic wire to decide
whether transmission is allowed.

The bursty_gen module represents higher layer users
who submit data for transmission. It uses an ON-OFF
pattern for traffic generation.

The mac process handles both incoming and outgoing
packets. Incoming packets are decapsulated from their
Ethernet frames and delivered to a higher level
process. Outgoing packets are encapsulated within
Ethernet frames and when the deference flag goes
low, a frame is sent to the transmitter. This process
also monitors for collisions, and if one occurs, the
transmission is appropriately terminated and
rescheduled for a later attempt.
74

Adding Collision Detection and Backoff

The eth_mac_v2 Process Model

The eth_mac_v2 process model manages the
transmission and reception of packets. These tasks
have been decomposed into three basic functions:

• encapsulating and queuing outgoing packets

• decapsulating and delivering incoming packets

• managing an ongoing transmission

The eth_mac_v2 Process Model
75

Adding Collision Detection and Backoff

The ethernet_mac_interface Process Model

The ethernet_mac_interface process converts
packets representing the application data into ethernet
form for the mac processor.

The ethernet_mac_interface process takes packets
from a traffic source, assigns a valid destination
address (if random assignment is specified for traffic
destination), and sends them to the mac processor. It
also accepts packets from the mac processor and
forwards them on to the higher layer traffic sink
process.

The ethernet_mac_interface Process Model
76

Adding Collision Detection and Backoff

The eth_defer_v2 Process Model

The eth_defer_v2 process determines whether the
deference flag should be raised or lowered. The
deference flag is read by the eth_mac_v2 process to
decide whether a transmission is permissible or
whether the channel must be deferred to another user.

The eth_defer_v2 Process Model
77

Adding Collision Detection and Backoff

Executing the ethcoax_net Simulation

Load the pre-defined Ethernet model and run a
simulation.

1 Go to <opnet_dir> \ <release> \ models \ std \
tutorial_req \ modeler.

2 Open the ethcoax_net Project.

➥ The ethcoax_net model opens in the
workspace.

3 Choose File > Save As... and save the project as
<initials>_ethcoax_net in your default model
directory.

The ethcoax_net Model

4 Choose DES > Run Discrete Event Simulation.
78

Analyzing the Ethernet Results

Analyzing the Ethernet Results

Because the default Ethernet model collects results
differently from the Aloha and CSMA simulations, you
need to use a slightly different approach to view the
results from this simulation.

1 In the Project Editor, choose DES > Results >
View Statistics

2 Select Object Statistics > ethcoax_net >
bus_0 [0] > utilization.

3 Change the filter type from As Is to average, then
click Show.

4 Click the Unselect button in the View Results
dialog box, then select Object Statistics >
ethcoax_net > bus_0 [0] > bit_thruput.

5 Click Show.

6 Place the graphs so you can see both clearly and
consider the results. The graphs should resemble
the following ones.
79

Analyzing the Ethernet Results

bit_thruput and utilization Graphs

Though the general trend lines are the same, the
graphs have radically different ordinate bounds.

The bit_thruput statistic measures the average
number of bits successfully received by the receiver
per unit time. By definition, this statistic only counts the
bits associated with collision-free packets and can
reach a maximum value of no more than
80

Analyzing the Ethernet Results

10 Mbits/second, the data rate assigned to the
channel. As you can see, the throughput after 30
seconds of simulation stabilizes near
5.1 Mbits/second. To get a more accurate reading of
the actual throughput, you can view the vector graph
as a set of data points.

1 Verify that the bit_thruput panel is the active
window.

2 Right-click in the panel border and choose
Show Statistic Data.

Selecting “Show Statistic Data”

➥ A window opens, showing the sequence of
ordinate and abscissa pairs for the vector, in
ASCII format.
81

Analyzing the Ethernet Results

3 From the pull-down menu at the top of the
Statistic Information dialog box, select Statistic
Data.

4 Scroll to the bottom of the editing pad to read the
final value of the vector.

The ASCII data should resemble that shown:

Bit Throughput at End of Simulation
82

Analyzing the Ethernet Results

At the end of the simulation, the receiver’s bit_thruput
statistic is indeed almost exactly 5.1 Mbits/second.
When divided by the channel capacity, this raw level of
bit throughput results in a normalized channel
throughput of 0.51 (that is, channel utilization of 51
percent).

When you are finished viewing the data, close the
Statistic Information dialog box.

You can also see these values on the utilization graph:

1 Click on the average (in utilization) graph to
activate that window.

2 Move the cursor to the far right of the vector and
let the cursor come to rest. The tooltip shows the
final value of the channel utilization.

You should see an average channel utilization of
about 51 percent. This value is the percentage of
the 10 Mbits/second channel that the probed
transmitter uses.
83

Analyzing the Ethernet Results

Average of Utilization Graph

This indicates that even when channel traffic is a
relatively high 51 percent, the Ethernet protocol is able
to carry essentially all of the submitted load. This also
demonstrates the superiority of the carrier-sensing,
collision-detection, and backoff strategies used by
Ethernet over the less sophisticated methods used by
the pure Aloha and CSMA protocols.

Congratulations! You have completed all of the
Modeler tutorial lessons. By now, you should be able
to build your own network model, collect statistics, run
a simulation, and analyze the results on your own.
84

Analyzing the Ethernet Results

If you purchased additional modules, such as
Multi-Vendor Import or ACE, continue with the tutorials
that illustrate these capabilities. Return to the main
tutorial menu and choose the desired tutorial from the
list of available lessons.

From time to time, you may have questions about
Modeler. Consult the documentation (Help >
Product Documentation) first. You can also contact
OPNET’s Technical Support by choosing Help > Web -
Support Center.

Good luck model building!
85

	Modeler Main Menu
	Tutorials Menu
	====================
	Introduction
	Getting Started
	Designing the Generic Transmitter Node Model
	Designing the Aloha Transmitter Node Process Model
	Designing the Generic Receiver Node Model
	Designing the Generic Receiver Node Process Model

	Building the Aloha Model
	Creating the Aloha Transmitter Process Model
	Creating the Generic Transmitter Node Model
	Enhancing the Generic Transmitter Node Model
	Creating the Generic Receiver Process and Node Models
	Creating the Generic Receiver Node Model
	Creating a New Link Model
	Creating the Network Model
	Executing the Aloha Simulation
	Importing and Configuring the Simulation Sequence

	Analyzing the Aloha Results
	Adding Deference
	Editing the Header Block
	Enhancing the Generic Transmitter Node Model
	Redefining the Network Model
	Configuring CSMA Simulations
	Analyzing the CSMA Results
	Viewing Both Results on the Same Graph
	Renaming the Traces

	Adding Collision Detection and Backoff
	The ethcoax_net Network Model
	The ethcoax_station_adv Node Model
	The eth_mac_v2 Process Model
	The ethernet_mac_interface Process Model
	The eth_defer_v2 Process Model
	Executing the ethcoax_net Simulation

	Analyzing the Ethernet Results
	====================
	Search the Document Set
	====================
	Show/Hide Toolbar
	Fit Window
	Print This Document

