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TRAFFIC ANALYSIS

Except for station sets and their associated loops, a telephone network is composed of
a variety of common equipment such as digit receivers, call processors, interstage
switching links, and interoffice trunks. The amount of common equipment designed
into a network is determined under an assumption that not all users of the network
need service at one time. The exact amount of common equipment required is unpre-
dictable because of the random nature of the service requests. Networks conceivably
could be designed with enough common equipment to instantly service all requests
except for occurrences of very rare or unanticipated peaks. However, this solution is
uneconomical because much of the common equipment is unused during normal net-
work loads. The basic goal of traffic analysis is to provide a method for determining
the cost-effectiveness of various sizes and configurations of networks.
Trafficin a communications network refers to the aggregate of all user requests be-
ing serviced by the network. As far as the network is concerned, the service requests
arrive randomly and usually require unpredictable service times. The first step of traf-
fic analysis is the characterization of traffic arrivals and service timesin a probabilistic
framework. Then the effectiveness of a network can be evaluated in terms of how
much traffic it carries under normal or average loads and how often the traffic volume
exceeds the capacity of the network.
- The techniques of traffic analysis can be divided into two general categories: loss
Systems and delay systems. The appropriate analysis category for a particular system
depends on the system’s treatment of overload traffic. In a loss system overload traffic ’
isrejected without being serviced. In a delay system overload traffic is held in a queue
until the facilities become available to service it. Conventional circuit switching op-
erates as a loss system since excess traffic is blocked and not serviced without a retry
on the part of the user. In some instances “lost” calls actually represent a loss of reve-
mue to the carriers by virtue of their not being completed.
Store-and-forward message or packet switching obviously possesses the basic
 characteristics of a delay system. Sometimes, however, a packet-switching operation

can also contain certain aspects of a loss system. Limited queue sizes and virtual cir-
cits both imply loss operations during traffic overloads. Circuit-switching networks |
- also incorporate certain operations of a delay nature in addition to the loss operation ‘
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520  TRAFFIC ANALYSIS

of the circuits themselves. For example, access to a digit receiver, an operator, or a ca]
processor is normally controlled by a queuing process.

The basic measure of performance for a loss system is the probability of rejection
(blocking probability). A delay system, on the other hand, is measured in terms of
service delays. Sometimes the average delay is desired, while at other times the prob.-
ability of the delay exceeding some specified value is of more interest.

Some of the analyses presented in this chapter are similar to those presented ip
Chapter 5 for the blocking probabilities of a switch. Chapter 5 is concerned mostly
with matching loss—the probability of not being able to set up a connection through
a switch under normal or average traffic volumes. This chapter, however, is mostly
concerned with the probability that the number of active sources exceeds some speci-
fied value. Typically, the specified value is the number of trunk circuits in a route,

12.1 TRAFFIC CHARACTERIZATION

Because of the random nature of network traffic, the following analyses involve cer: .

tain fundamentals of probability theory and stochastic processes. In this treatment
only the most basic assumptions and results of traffic analysis are presented. The in,
tent is to provide an indication of how to apply results of traffic analysis, not to delve
deeply into analytical formulations. However, a few basic derivations are presented to

acquaint the user with assumptions in the models so they can be appropriately applied:
In the realm of applied mathematics, where these subjects are treated more for:
mally, blocking probability analyses are referred to as congestion theory and delay

analyses are referred to as queuing theory. These topics are also commonly referred
to as traffic flow analysis. In a circuit-switched network, the “flow” of messages is not
so much of a concern as are the holding times of common equipment. A circuit:
switched network establishes an end-to-end circuit involving various network facili:
ties (transmission links and switching stages) that are held for the duration of a call:
From a network point of view, it is the holding of these resources that is important;
not the flow of information within individual circuits. g

On the other hand, message-switching and packet-switching networks are directly

concerned with the actual flow of information, since in these systems traffic on the
transmission links is directly related to the activity of the sources. iR
As mentioned in Chapter 7, circuit switching does involve certain aspects of traffic

flow in the process of setting up a connection. Connect requests flow from the sources - -

to the destinations acquiring, holding, and releasing certain resources in the process:
As was discussed, controlling the flow of connect requests during network overloads

is a vital function of network management. : A
The unpredictable nature of communications traffic arises as aresult of twounder:  JE -
lying random processes: call arrivals and holding times. An arrival from any particular . §§-
user is generally assumed to occur purely by chance and be totally independent of a2~ §
rivals from other users. Thus the number of arrivals during any particular time interval -

is indeterminate. In most cases holding times are also distributed randomly. In some

applications this element of randomness can be removed by assuming constant hold: ~ -
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ing @es (e.g., fixed-length packets). In either case the traffic load presented to a net-
work is fundamentally dependent on both the frequency of arrivals and the average

holding time for each arrival. Figure 12.1 depicts a representative situation in which

both the arrivals and the holding times of 20 different sources are unpredictable. The

bott.om of the figure depicts activity of each individual source while the top displays
the instantaneous total of all activity. If we assume that the 20 sources are to be coi—
nect.ed toa trunk group, the activity curve displays the number of circuits in use at an
particular time. Notice that the maximum number of circuits in use at any one time i}s,
16 and the average utilization is a little under 11 circuits. In general terms, the trunks
are referred to as servers, and a trunk group is a server group. ’

Traffic Measurements

One measure of .network capacity is the volume of traffic carried over a period of time
Trafﬁc;f\t/_lolume 1s essentially the sum of all holding times carried during the interval-
The traffic volume represented in Figure 12.1 is the area ivi .
: . under th -
proximately 84 call minutes). ey e e
A more us_eﬁ'l.l mea§me of traffic is the traffic intensity (also called traffic flow).
Tra.fﬁc. 11‘1ten51ty is obtained by dividing the traffic volume by the length of time during
‘;thch 1t.1s measun?d. T_'hus traffic intensity represents the average activity during a pe-
r%od of @e ( 10.'5 m Flgu:e. 12.1). Although traffic intensity is fundamentally dimen-
smn%ess (tlme divided by time), it is usually expressed in units of erlangs, after the
Danish pioneer traffic theorist A. K. Erlang, or in terms of hundred (century) call sec-

onds per hour (CCS). The relationship b i
. p between erlangs and CCS units i
?y observing that there are 3600 sec in an hour: Fambe derived
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Figure 12.1 Activity profile of network traffic (all calls caﬁed).
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1 erlang = 36 CCS

The maximum capacity of a single server (channel) is 1 erlang, which is to say that
the server is always busy. Thus the maximum capacity in erlangs of a group of serverg
is merely equal to the number of servers. Because traffic in a loss system experiences
infinite blocking probabilities when the traffic intensity is equal to the number of sery-
ers, the average activity is necessarily less than the number of servers. Similarly, delay
systems operate at less than full capacity, on average, because infinite delays occur
when the average load approaches the number of servers. :

Two important parameters used to characterize traffic are the average arrival rate
A and the average holding time z,;,. If the traffic intensity A is expressed in erlangs, then

A=), | (12.1)

where A and ¢, are expressed in like units of time (e.g., calls per second and seconds
. per call, respectively). :

Notice that traffic intensity is only a measure of average utilization during a time
period and does not reflect the relationship between arrivals and holding times. That
is, many short calls can produce the same traffic intensity as a few long ones. In many
of the analyses that follow the results are dependent only on the traffic intensity. In

some cases, however, the results are also dependent on the individual arrival patterns -

and holding time distributions. ;

Public telephone networks are typically' analyzed in terms of the average activity -

during the busiest hour of a day. The use of busy-hour traffic measurements to design
and analyze telephone networks represents a compromise between designing for the
overall average utilization (which includes virtually unused nighttime hours) and de-
signing for short-duration peaks that may occur by chance or as a result of TV com-
mercial breaks, radio call-in contests, and so on. C

Busy-hour traffic measurements indicate that an individual residential telephone is

typically in use between 5 and 10% of the busy hour. Thus each telephone represents -

a traffic load of between 0.05 and 0.10 erlangs. The average holding time is between

3 and 4 min, indicating that a typical telephone is involved in one or two phone calls

during the busy hour.

Business telephones usually produce loading patterns different from residential” -
phones. First, a business phone is generally utilized more heavily. Second, the busy.
hour of business traffic is often different from the busy hour of residential traffic. Fig:-; '
ure 12.2 shows a typical hourly variation for both sources of traffic. The trunks of?i?
telephone network are sometimes designed to take advantage of variations in calling

patterns from different offices. Toll connecting trunks from residential areas are ofter
busiest during evening hours, and trunks from business areas are obviously busies

during midmorning or midafternoon. Traffic engineering depends not only on ovétaﬂ'

traffic volume but also on time—volume traffic patterns within the network.
A certain amount of care must be exercised when determining the total traffic :
of a system from the loading of individual lines or trunks. For example, since two tel
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Figure 12.2 Traffic volume dependence on time of day.

phones are involved in each connection, the total load on a switching system is exactl
om?-ha]f the total of all traffic on the lines connected to the switch. In addition, it may
be important to include certain setup and release times into the average holdin,g u'me}sl
of 5(.)me.c.ommon equipment, A 10-sec setup time is not particularly significant for a
4-min voice call but can actually dominate the holding time of equipment used for
.short data messages. Common equipment setup times also become more significant
In the presence of voice traffic overloads. A greater percentage of the overall load is
_represefnted by call attempts since they increase at a faster rate than completions

An 1m.portant distinction to be made when discussing traffic in a communica;:ions
network is tt'le difference between the offered traffic and the carried traffic. The of-
fered traffic is the total traffic that would be carried by a network capable of s.ervicin
:dll requ.ests as they arise. Since economics generally precludes designing a network t(%
1m1?1ed1ate1y carry the maximum offered traffic, a small percentage of offered traffic
it)yplcaﬂy expenences network blocking or delay. When the blocked calls are rejected
by the network, the mode of operation is referred to as blocked calls cleared or lost
calls clez.ired.. In essence, blocked calls are assumed to disappear and never return. This
;is)uilptlon Is most approprifzte for trunk groups with alternate routes. In this case a

';h ed cal% 1s normally serviced by another trunk group and does not, in fact, return
e e camﬂf::ld traffic of a loss system'is always less than the offered traffic. A dela)'r
i m% orilIi le other h@d, does 1_10t reject blocked calls but holds them until the nec-
ferea;y ac; l:.leS are available. W1_th the assumption that the long-term average of of-

traffic is less than the capacity of the network, a delay system carries all offered
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traffic. If the number of requests that can be waiting for service is hmlted however,a
delay system also takes on properties of a loss system. For examplc.a, if the queue for
holding blocked arrivals is finite, requests arriving when the queue is full a;e cleared,

>

12.1.1 Arrival Distributions

The most fundamental assumption of classical traffic analysis is that c@ arrivals are
independent. That is, an arrival from one source is unrelated to an @Vd ﬁ'Ol’l:l any
other source. Even though this assumption may be invalid m some 11.13tances, it has
general usefulness for most applications. In those cases where call arnvz_lls tend to pe
correlated, useful results can still be obtained by modifying a random arrival analysis,
In this manner the random arrival assumption provides a mathematical formulaﬁpn
that can be adjusted to produce approximate solutions to problems that are otherwise
mathematically intractable.

T T D R F O A

SRR T

Negative Exponential Interarrival Times -
Designate the average call arrival rate from a large group of independent sources (sub- -
scriber lines) as A. Use the following assumptions:

1. Only one arrival can occur in any sufficiently small interval.

2. The probability of an arrival in any sufficiently small interval. is c}irectly :
proportional to the length of the interval. (The probability of an arrival is 7\,135:

where At is the interval length.) v o :
3. The probability of an arrival in any particular interval is independent of what o
has occurred in other intervals.

5

- It is straightforward [1] to show that the probability distribution of interarrival tlmes
is

e
P =™ _(‘12..21)‘ ,
Equation 12.2 defines the probability that no arrivals occur in a randomly se'lected-in-; 1
terval z. This is identical to the probability that ¢ seconds elapse from one arrival to;the
next. e

Example 12.1.  Assuming each of 10,000 subscriber lines originate one call p
hour, how often do two calls arrive with less than 0.01 sec between them? !

Solution. The average arrival rate is

A =3600/10,000 = 2.78 arrivals/sec

From Equation 12.2, the probability of no arrival in a 0.01-sec intervalis "
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Py(0.0278) = %028 — g 973

Thus 2.7% of the arrivals occur within 0.01 sec of the previous arrival. Since the arri-

val rate is 2.78 arrivals per second, the rate of occurrence of interarrival times less than
0.01 sec is

2.78 x 0.027 = 0.075 times/sec

The first two assumptions made in deriving the negative exponential arrival distri-
bution can be intuitively justified for most applications. The third assumption, how-
ever, implies certain aspects of the sources that cannot always be supported. First,
certain events, such as television commercial breaks, might stimulate the sources to
place their calls at nearly the same time. In this case the negative exponential distri-
bution may still hold but for a much higher calling rate during the commercial,

A more subtle implication of the indepéndent arrival assumption involves the num-
ber of sources, not just their calling patterns. When the probability of an arrival in any
small time interval is independent of other arrivals, it implies that the number of
sources available to generate requests is constant. If a number of arrivals occur imme-
diately before any subinterval in question, some of the sources become busy and can-
not generate requests. The effect of busy sources is to reduce the average arrival rate.
Thus the interarrival times are always somewhat larger than what Equation 12.2 pre-
dicts them to be. The only time the arrival rate is truly independent of source activity
is when an infinite number of sources exist.

If the number of sources is large and their average activity is relatively low, busy
sources do not appreciably reduce the arrival rate. For example, consider an end office
that services 10,000 subscribers with 0.1 erlang of activity each. Normally, there are
1000 active links and 9000 subscribers available to generate new arrivals. If the num-

~ berof active subscribers increases by an unlikely 50% to 1500 active lines, the number
of idle subscribers reduces to 8500, a change of only 5.6%. Thus the arrival rate is rela-
tively constant over a wide range of source activity. Whenever the arrival rate is fairly

constant for the entire range of normal source activity, an infinite source assumption
is justified.

Actually, some effects of finite sources have already been discussed in Chapter 5

when analyzing blocking probabilities of a switch, It is pointed out that Lee graph
analyses overestimate the blocking probability because, if some number of interstage
links in a group are known to be busy, the remaining links in the group are less likely
to be busy. A Jacobaeus analysis produces a more rigorous and accurate solution to
the blocking probability, particularly when space expansion is used. Accurate analy-

ses of interarrival times for finite sources are also possible. These are included in the
blocking analyses to follow.

i Poisson Arrival Distribution
. Equation 12.2 merely provides a means of determining the distribution of interarrival
times. Tt does not, by itself, provide the generally more desirable information of how
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many arrivals can be expected to occur in some arbitrary time interval. Using the same

assumptions presented, however, the probability of j arrivals in an interval zcan be de- -

termined [1] as

Ay

P(A)= (J—, ™

Equation 12.3 is the well-known Poisson probability law. Notice that when j = 0, the
probability of no arrivals in an interval ¢ is Py(#), as obtained in Equation 12.2.

Again, Equation 12.3 assumes arrivals are independent and occur at a given aver-

age rate A, irrespective of the number of arrivals occurring just prior to an interval in

question. Thus the Poisson probability distribution should only be used for arrivals

from a large number of independent sources. : -

Equation 12.3 defines the probability of experiencing exactly j arrivals in ¢ seconds;

Usually there is more interest in determining the probability of j or more arrivals in ¢

seconds:

P ()= Z P(\)

i
1
=1-Y,P(\)
=)

=1-P M)
where Py(Az) is defined in Equation 12.3.

Example 12.2. Given a message-switching node that normally experiences fou

arrivals per minute, what is the probability that eight or more arrivals occur indn -

arbitrarily chosen 30-sec interval? L

g

Solution. The average number of arrivals in a 30-sec interval is

30
?\1—4><60-2

The probability of eight or more arrivals (when the average is 2) is

Pyg(2)= Z P ,-(2)

=8

(123)

I
i
%
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7
=1-Y P(2)

=0
c1-ef142,.2,2 2
l1-¢ (1+1!+2!+3!+'“+ﬁ
=0.0011

Example 12.3.  What is the probability that a 1000-bit data block experiences

exactly four errors while being transmitted over a transmission link with abiterrorrate
(BER) of 10-?

Solutio.n.. A.ssuming independent errors (a questionable assumption on many
transmission links), we can obtain the probability of exactly four errors directly from

_the Poisson distribution. The average number of errors (arrivals) Ar=

10°x 105 =0.01. Thus '

4 B
prob(4errors) = P,(0.01) = (02% €00 = 4,125 x 10710

An alternative solution can be obtained from the binomial probability law:
prob(4errors) = (1 (3100) p*(l - p)*%e

=4.101x10"°  wherep=10"

As can be seen, the two solutions of Example 12.3 are nearly identical. The close-
ness of tt.le two answers reflects the fact that the Poisson probability distribution is
often derived as a limiting case of a binomial probability distribution. Because it is

ea:sier to calculate, a Poisson distribution is often used as an approximation to a bino-
mial distribution.

1?.1.2 Holding Time Distributions

'.I'he §econd factor of traffic intensity as specified in Equation 12.1 is the average hold-
Ingtime #,,. In some cases the average of the holding times is all that needs to be known
about holding times to determine blocking probabilities in a loss system or delays in
adelay system. In other cases it is necessary to know the probability distribution of
the holding times to obtain the desired results. This section describes the two most

¢ommonly assumed holding time distributions: constant holding times and exponen-
tial holding times.
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Constant Holding Times
Although constant holding times cannot be assumed for conventional voice conversg. )
tions, it is a reasonable assumption for such activities as per-call call processing re-
quirements, interoffice address signaling, operator assistance, and recorded message
playback. Furthermore, constant holding times are obviously valid for transmissiop
times in fixed-length packet networks. :
When constant holding time messages are in effect, it is straightforward to uge
Equation 12.3 to determine the probability distribution of active channels. Assume,
for the time being, that all requests are serviced. Then the probability of j channels be.
ing busy at any particular time is merely the probability thatj arrivals occurred in the
time interval of length ,,, immediately preceding the instant in question. Since the ay: I
erage number of active circuits over all time is the traffic intensity A = Az, the prob:
ability of j circuits being busy is dependent only on the traffic intensity: '

T T e v T

P(\,)=P(A)

where A= arrival rate
I, = constant holding time
A= traffic intensity (erlangs)

Exponential Holding Times
The most commonly assumed holding time distribution for conventional telephone
conversations is the exponential holding time distribution:

Pt = ¢/ (12.6)

where 1, is the average holding time. Equation 12.6 specifies the probability that a
holding time exceeds the value #. This relationship can be derived from a few simp_i,é%
assumptions concerning the nature of the call termination process. Its basic justiﬁc_:a;-
tion, however, lies in the fact that observations of actual voice conversations exhlbq
a remarkably close correspondence to an exponential distribution. ;
The exponential distribution possesses the curious property that the probability of
a termination is independent of how long a call has been in progress. That is, no matter 3
how long a call has been in existence, the probability of it lasting another  seconds is 7]
defined by Equation 12.6. In this sense exponential holding times represent the most
random process possible. Not even knowledge of how long a call has been in progress -
provides any information as to when the call will terminate. e
Combining a Poisson arrival process with an exponential holding time process it
obtain the probability distribution of active circuits is more complicated than it was
for constant holding times because calls can last indefinitely. The final result, how:
ever, proves to be dependent on only the average holding time. Thus Equation 12.518

PR N AT BT
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valid- for e)fpopenﬁal holding times as well as for constant holding times (or any hold-
ing time distribution). Equation 12.5 is therefore repeated for emphasis: The prob-

- ability of j circuits being busy at any particular instant, assuming a Poisson arrival

process and that all requests are serviced immediately, is

A _
P(A)= e A (12.7)

where A is the traffic intensity in erlangs. This result is true for any distribution of
holding times.

Example 12.4. Assume that a trunk group has enough channels to immediately
carry a]l of the traffic offered to it by a Poisson process with an arrival rate of one call
per minute. Assume that the average holding time is 2 min. What percentage of the

 total traffic is carried by the first five circuits, and how much traffic is carried by all

i 125 f§
A (123) . J§ numbered circuits.)

remaining circuits? (Assume that the traffic is always packed into the lowest

' . Solution. _ The traffic intensity (offered load) of the systemis A =1 x 2 = 2 erlangs.
JF The traffic intensity carried by i active circuits is exactly i erlangs.

Hence the traffic carried by the first five circuits can be determined as follows:

As=1P(2) +2P,(2) + 3Py(2) + 4P,(2) + 5P,(2)

_ o, 2%x2% 3x23 4x2% 5x25
‘e(“ 2t TTa YTy g

= 1.89 erlangs

All of the remaining circuits carry

2-1.89=0.11 erlang

Th.e result of Example 12.4 demonstrates the principle of diminishing returns as the
Capacity of a system is increased to carry greater and greater percentages of the offered

c. The first five circuits in Example 12.4 carry 94.5% of the traffic while all re-

mMIlg circuits carry only 5.5% of the traffic. If there are 100 sources, 95 extra cir-
. SWts are needed to carry the 5.5%.
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122 LOSS SYSTEMS

Example 12.4 provides an indication of the blocking probabilities that arise when the
number of servers (circuits) is less than the maximum possible traffic load (number of

* sources). The example demonstrates that 94.5% of the traffic is carr%ed t.>y only five |
circuits. The implication is that the blocking probability, if only five circuits are avajl.

able to carry the traffic, is 5.5%. Actually, Example 12.4 is carefully vYorded to md1
cate that all of the offered traffic is carried but that only the trafflc carried by the ﬁm
five circuits is of interest. There is a subtle but important distinction between the prob.

ability that six or more circuits are busy (as can be obtained from Equation 12.7) and

the blocking probability that arises when only five circuits exist.

The basic reason for the discrepancy is indicated in Figure 12.3, which depicts the

same traffic pattern arising from 20 sources as is shown previously in Figure 12.1. Fig.?
ure 12.3, however, assumes that only 13 circuits are available to carry the traffic. Thg

the three arrivals at t = 2.2, 2.3, and 2.4 min are blocked and assumed to have left the ’
system. The total amount of traffic volume lost is indicated by the shaded area, which .

is the difference between all traffic being serviced as it arrives and traffic being cam5d
by a blocked calls cleared system with 13 circuits. The most important feature to zo-
tice in Figure 12.3 is that the call arriving at ¢ = 2.8 is not blocked, even though the

original profile indicates that it arrives when all 13 circuits are busy. The reason it is '
not blocked is that the previously blocked calls left the system and therefore reduced -

the congestion for subsequent arrivals. Hence the percentage of time that the original

traffic profile is at or above 13 is not the same as the blocking probability when only .

13 circuits are available. :

3
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12.2.1 Lost Calls Cleared

The first person to account fully and accurately for the effect of cleared calls in the
calculation of blocking probabilities was A. K. Erlang in 1917. In this section we
discuss Erlang’s most often used result: his formulation of the blocking prob-
ability for a lost calls cleared system with Poisson arrivals. Recall that the Poisson
arrival assumption implies infinite sources. This result is variously referred to as
Erlang’s formula of the first kind, E, NA); the Erlang-B formula; or Erlang’s loss
formula.

A fundamental aspect of Erlang’s formulation, and a key contribution to modern
stochastic process theory, is the concept of statistical equilibrium. Basically, statistical
equilibrium implies that the probability of a system’s being in a particular state (num-
ber of busy circuits in a trunk group) is independent of the time at which the system
is examined. For a system to be in statistical equilibrium, a long time must pass (sev-
eral average holding times) from when the system is in a known state until it is again

- examined. For example, when a trunk group first begins to accept traffic, it has no busy

circuits. For a short time thereafter, the system is most likely to have only a few busy
circuits. As time passes, however, the system reaches equilibrium. At this point the

- most likely state of the system is to have A = Aty busy circuits.

When in equilibrium, a system is as likely to have an arrival as it is to have a ter-
mination. If the number of active circuits happens to increase above the average A, de-
partures become more likely than arrivals. Similarly, if the number of active circuits
happens to drop below A, an arrival is more likely than a departure. Thus if a system
is perturbed by chance from its average state, it tends to return.

Although Erlang’s elegant formulation is not particularly complicated, it is not pre-
sented here because we are mostly interested in application of the results. The inter-
ested reader is invited to see reference [2] or [3] for a derivation of the result:

AN

BB =55 i (12.8)

. Where N = number of servers (channels)

A = offered traffic intensity, At,, (erlangs)

Equation 12.8 specifies the probability of blocking for a system with random arri-

' vals from an infinite source and arbitrary holding time distributions. The blocking

. Probability of Equation 12.8 is plotted in Figure 12.4 as a function of offered traffic

Intensity for various numbers of channels. An often more useful presentation of Er-
- lang’s results is provided in Figure 12.5, which presents the output channel utilization
- forvarious blocking probabilities and numbers of servers. The output utilization p rep-
 Tesents the traffic carried by each circnit:
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where A
N

1-BA
oo (=BM

offered traffic
number of channels

N

(12.9)

Solution.

for B = 5% -at a loading of 2.2 erlangs i
requires a total of 20 circnits.
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The offered traffic from each cluster is 22 X 0.1 = 2.2 erlangs. Since the
average number of active circuits is much smalle

infinite source analysis can be used. Usin

r than the number of sources, an
g Table D.1, the number of circuits required
s 5. Thus the configuration of Figure 12.6a

B = blocking probability
(1-B)A = carried traffic

Blocking probabilities are also provided in tabular form in Appendix D.

Example 12.5. A T1 line is to be used as a tie-line trunk group beFvs-/eer} two PBXs,
How much traffic can the trunk group carry if the blocking probability is to be 0.19
‘What is the offered traffic intensity?

Solution. From Figufe 12.5 it can be seen that the output circuit utilization for A
B =0.1and N =24 is 0.8. Thus the carried traffic intensity is 0.8 x 24 =19.2 erlangs,

Since the blocking probability is 0.1, the maximum level of offered traffic is

19.2
= =21.3 erlangs
A 1-0.1 g

Example 12.6.  Four clusters of data terminals are to be connected to a computer by
way of leased circuits, as shown in Figure 12.6. In Figure 12.6a the traffic from the
clusters uses separate groups of shared circuits. In Figure 12.65 the traffic from all

clusters is concentrated onto one common group of circuits. Determine the total -

number of circuits required in both cases when the maximum desired blo.ckin.g
probability is 5%. Assume that 22 terminals are in each cluster and each terminal is
active 10% of the time. (Use a blocked calls cleared analysis.)

13 Channels

20 Channels

(a) (b)

Figuré 12.6 Data terminal network of Example 10.6: (@) four separate groups; (b) all trafﬁ§

concentrated into one group.

L ety

SRR A B A g

traffic load.

vals). In effect, excess traffic in one group can use i

The total offered traffic to the concentrator of the ¢

onfiguration of Figure 12.6b is
4x 2.2 = 8.8 erlangs. From Table D.1, 13 circuits are required to support the given

Example 12.6 demonstrates that consolidation of small traffic groups into one large
traffic group can provide significant savings in total circuit requirements. Large
groups are more efficient than multiple small groups because it is unlikely that the
small groups will become overloaded at the same time (assuming independent arri-
dle circuits in another group. Thus
those circuits that are needed to accommodate traffic peaks but are normally idle are
utilized more efficiently when the traffic is combined into one group. This feature is

one of the motivations mentioned in Chapter 10 for integrating voice and data traffic

into a common network. The total savings in transmission costs is most significant
when the individual traffic intensities are low. Hence jt is the peripheral area of a net-

. work that benefits the most by concentrating the traffic.

The greater circuit efficiency obtained by combining traffic into large groups is

_often referred to as the advantage of large group sizes. This efficiency of circuit utili-

zation is the basic motivation for hierarchical switching structures. Instead of intercon-
necting a large number of nodes with rather small trunk groups between each pair, it

is more economical to combine all traffic from individual nodes into one large trunk
group and route the traffic through a tandem switching node. Figure 12.7 contrasts a

mesh versus a star network with a centralized switching node at the center. Obviously,
the cost of the tandem switch becomes

is large enough.

justified when the savings in total circuit miles

(a) (b)

Figure 12.7 Use of tandem switching to concentrate traffic: (a) mesh; (b) star.
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Example 12.7. 'What happens to the blocking probabilities in Figure 12.6a and p
discussed in Example 12.6 when the traffic intensity increases by 50%?

-l a 400% increase in the blocking probability (from 5 to 20%).

Example 12.7 demonstrates some important considerations in network demgn As
indicated, blocking probabilities are very sensitive to increases in traffic intensities,
particularly when the channels are heavily utilized. Because large trunk groups utilize
their channels more efficiently, they are more vulnerable to traffic increases than arpe
a number of smaller groups designed to provide the same grade of service. Further.

alarge group more than the performance of several small groups. In both cases the vul-
nerability of the large groups arises because large groups operate with less spare ca:
pacity than do multiple small groups.

A second aspect of blocking analyses demonstrated in Example 12.7 is that the cal-
culated results are highly dependent on the accuracy of the traffic intensities. Accurate
values of traffic intensities are not always available. Furthermore, even when accurate
traffic measurements are obtainable, they do not provide an absolute indication of how
much growth to expect. Thus only limited confidence can be attached to calculations
of blocking probabilities in an absolute sense. The main value of these analyses is that
they provide an objective means of comparing various network sizes and configura:
tions. The most cost-effective design for a given grade of service is the one that should
be chosen, even if the traffic statistics are hypothetical. If a network is liable to expe!
rience wildly varying traffic patterns or rapid growth, these factors must be considered
when comparing design alternatives. A network with a somewhat larger initial cost
may be more desirable if it can absorb or grow to accommodate unanticipated traffic
volumes more easily.

12.2.2 Lost Calls Returning

usually serviced elsewhere. However, lost calls cleared analyses are also used in in--
stances where blocked calls do not get serviced elsewhere. In many of these cases;.
blocked calls tend to return to the system in the form of retries. Some examples ate;
subscriber concentrator systems, corporate tie lines and PBX trunks, calls to busy tel
phone numbers, and access to WATS lines (if DDD alternatives are not used). This:

. Solution.  If the traffic intensity of each group increases from 2.2 to 3.3 erlangs, the
blocking probability of the configuration of Figure 12.6a increases from 5% to almosi
14%.

i In the configuration of Figure 12.6b a 50% increase in the traffic intensity causss v

more, failures of equal percentages of transmission capacity affect the performance’of -

In the lost calls cleared analyses just presented, it is assumed that unserviceable re- -
quests leave the system and never return. As mentioned, this assumption is most ap-
propriate for trunk groups whose blocked requests overflow to another route and are

12.2 LOSS SYSTEMS 537

section derives blocking probability relationships for lost calls cleared systems with
random retries.

The following analysis involves three fundamental assumptions regarding the na-
ture of the returning calls:

1. All blocked calls return to the system and eventually get serviced, even if
multiple retries are required.

2. The elapsed times between call blocking occurrences and the generation of
retries are random and statistically independent of each other. (This assumption
allows the analysis to avoid complications arising when retries are correlated to

each other and tend to cause recurring traffic peaks at a particular waiting time
interval.)

3. The typical waiting time before retries occur is somewhat longer than the
average holding time of a connection. This assumption essentially states that the
system is allowed to reach statistical equilibrium before a refry occurs.
Obviously, if retries occur too soon, they are very likely to encounter congestion
since the system has not had a chance to “relax.” In the limit, if all retries are
immediate and continuous, the network operation becomes similar to a delay
system discussed in later sections of this chapter. In this case, however, the
system does not queue requests—the sources do so by continually “redialing.”

T e o R T TN

r When considered in their entirety, these assumptions characterize retries as being
staushcale indistinguishable from first-attempt traffic.* Hence blocked calls merely
add to the first-attempt call arrival rate.

Consider a system with a first-attempt call arrival rate of A. If a percentage B of the
f} calls is blocked, B times A retries will occur in the future. Of these retries, however, a
3 percentage B will be blocked again. Continuing in this manner, the total arrival rate

.\ after the system has reached statistical equilibrium can be determined as the infinite
Jg series

St i foy i o

N=A+BA+B*A+B\+...

A (12.10)

1-B

.where B is the blocking probability from a lost calls cleared analysis with traffic in-
nsity A" = A't,,

Equation 12.10 relates the average arrival rate A’, including the retries, to the first-
ltempt arrival rate and the blocking probability in terms of A’. Thus this relationship
08s not provide a direct means of determining A” or B since each is expressed in terms
f the other. However, the desired result can be obtained by iterating the lost calls

Fll'st-attempt traffic is also referred to as demand traffic: the service demands assuming all arrivals are
£ Serviced immediately. The offered traffic is the demand traffic plus the retries.






