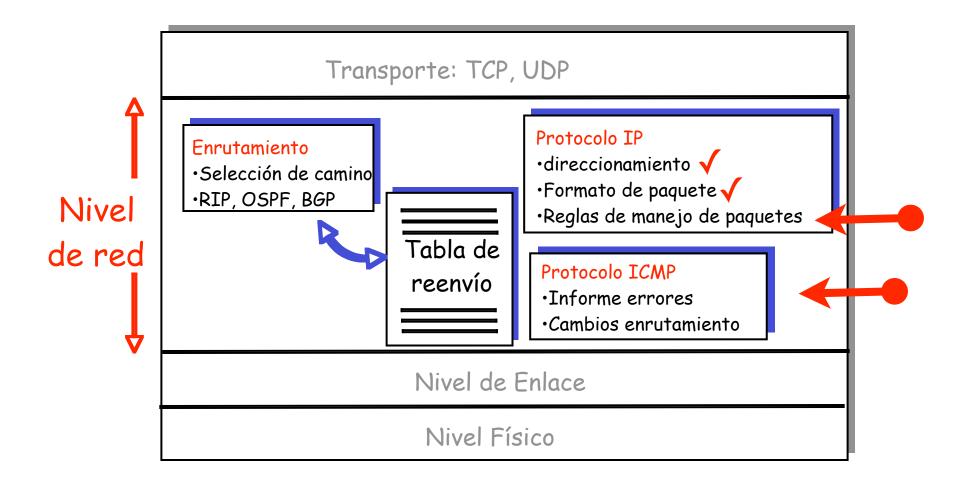
Redes de Computadores Nivel de Red: Reenvio IP + ICMP

Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/

En clases anteriores...

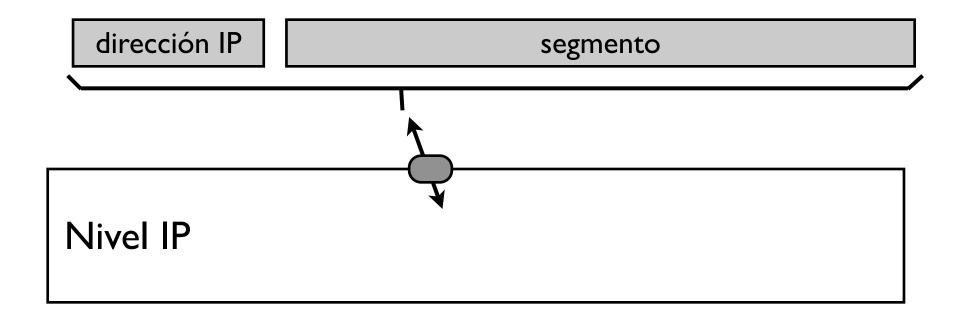
- El nivel de red IP
- Tabla de reenvío prefijos y direccionamiento IP


En esta clase...

- **IP**
 - > reglas de reenvio
- ICMP
 - > ping
 - > traceroute

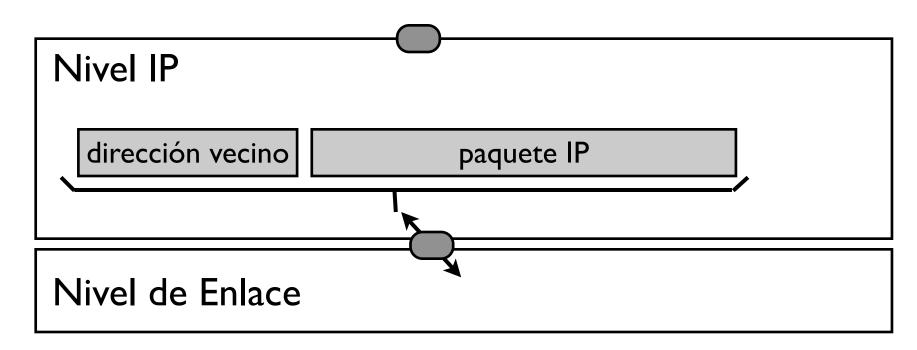
Red-2 2 /34

El nivel de Red de Internet


Componentes del Nivel de Red

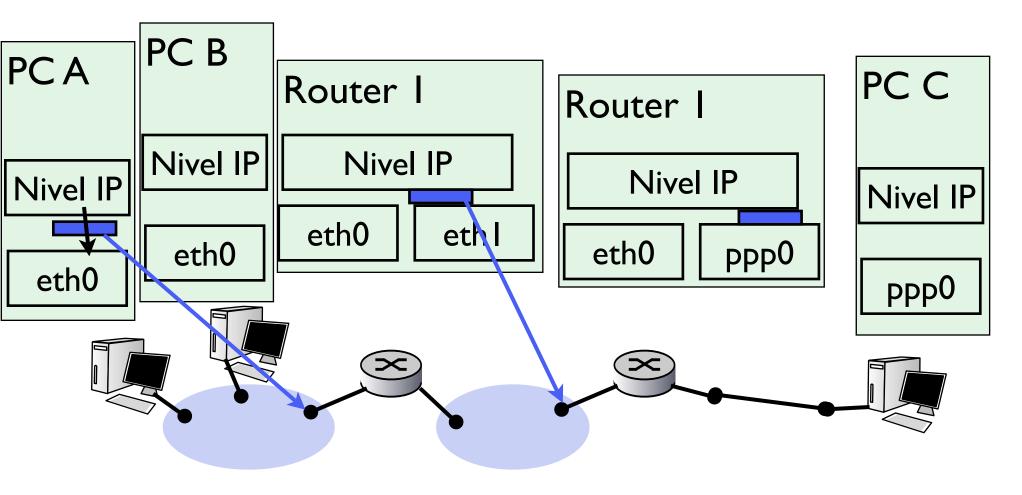
Red-2 3 /34

Interfaz con el nivel de transporte


- Envía este segmento a esta dirección IP
 - > El puerto no existe a nivel IP
 - > El tamaño máximo de segmento es: 65535-20
- Llega este segmento desde esta IP

Red-2 4 /34

Interfaz con el nivel de enlace


- Envía estos datos (paquete IP) a este vecino
- Llega este paquete IP de este vecino
- Como identificamos a los vecinos?
- Que pasa si el ordenador tiene varios interfaces?

Red-2 5 /34

Interfaz con el nivel de enlace

- La dirección de un vecino es:
 {interfaz local, dirección del vecino en la red de area local}
- En algunos tipos de enlaces el interfaz es suficiente

Red-2 6 /34

Interfaz con el nivel de enlace

- Los niveles de enlace de redes de área local (por ejemplo Erthernet) utilizan diferentes tipos de direcciones para identificar a los ordenadores en una red de área local
- Estas direcciones las llamaremos direcciones de nivel de enlace o direcciones Ethernet (también direcciones físicas o direcciones MAC)

Las veremos en el tema de nivel de enlace

- El sistema operativo proporciona a IP mecanismos para obtener la dirección de nivel de enlace de los vecinos a partir de la dirección IP.
 - Se mantiene una tabla de direcciones de los vecinos conocidos en cada interfaz
 - Cuando un vecino que necesitamos no está en la tabla se envían mensajes para localizarlo (Vease ARP en el siguiente tema)

Red-2 7 /34

Nivel IP

Entradas

- Llega un paquete procedente del nivel de enlace (independientemente de cual)
- > Llega un paquete a enviar procedente del nivel de transporte
- > En ambos casos IP hace el mismo proceso

Resultados

- > Entregar un paquete al nivel superior
- > Enviar un paquete a través de uno de los interfaces

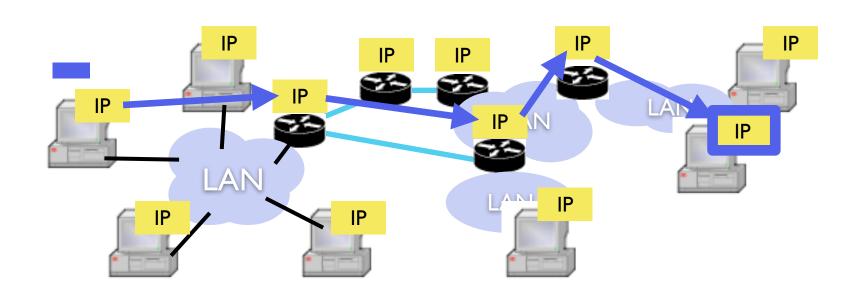
Red-2 8 /34

Recibiendo un paquete IP

- El nivel IP recibe un paquete proveniente del nivel inferior
 - Comprobar que la cabecera es correcta con el checksum
 - + Error: descartar el paquete
 - Extraer la dirección IP destino
 - Es un paquete dirigido a este host? (la dirección IP es la mía? o una de las mías?)
 - + SI: entregar al nivel superior
 - + NO: pasa a la siguiente pregunta...
 - > Soy un router? (IP_FORWARDING activado?)
 - + SI: pasamos al algoritmo de envío
 - + NO: descartar el paquete

Red-2 9 /34

Enviando un paquete IP


- El nivel IP recibe un paquete proveniente del nivel de transporte
 - Extraer la dirección IP destino
 - Es un paquete dirigido a este host? (la dirección IP es la mía? o una de las mías?)
 - + SI: entregar al nivel superior
 - + NO: pasamos al algoritmo de envío

Red-2 10 /34

Envío de un paquete IP

2 envíos diferentes

- > Saber que hacer con los destinos que no están en mi LAN
 - + Saber cual es el siguiente salto
 - + Enviar al siguiente salto
- Enviar a los destinos que estén en mi LAN

Red-2 II /34

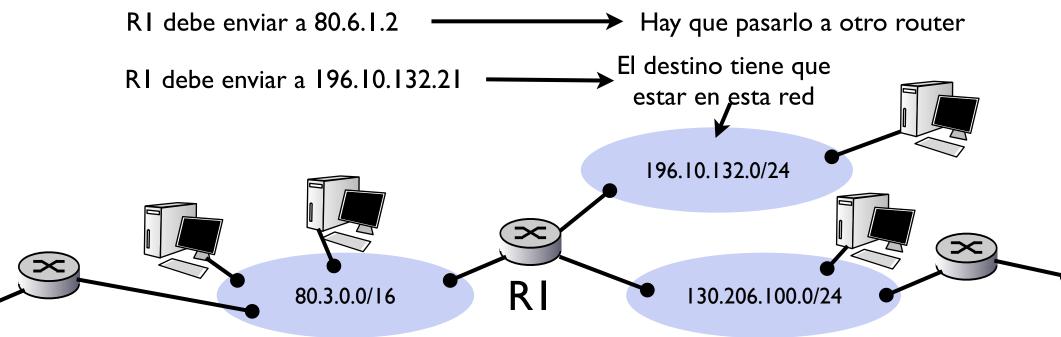
Enviando un paquete IP

- El nivel IP tiene un paquete a enviar
 - > Proveniente del nivel superior
 - > Es un paquete que me ha llegado y no es para mi (y soy un router)
- Extraer dirección de destino

Esta en alguna de las subredes a las que estoy conectado?

- SI = el destino es un vecino enviar paquete utilizando el nivel de enlace
- NO = el destino no es un vecino
 Determinar el siguiente salto
 - + Tabla de encaminamiento con los siguientes saltos según prefijos La tabla de rutas

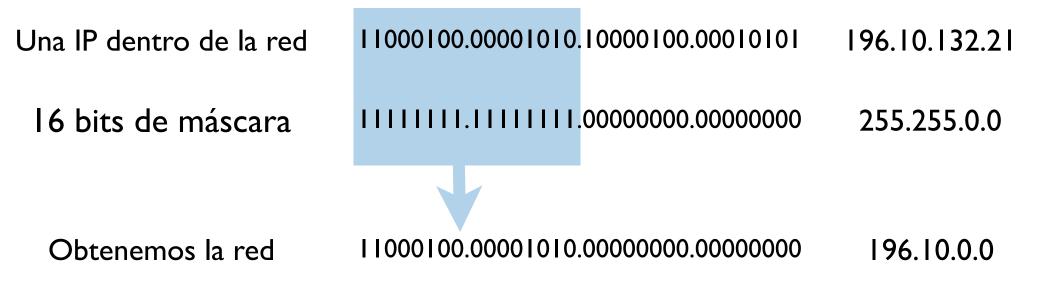
Red-2 12 /34


Problemas

- Cómo saber si el destino es un vecino o no de este router?
 - > Para eso se organizan las redes en grupos de direcciones contiguas para decidir rápidamente si una dirección de destino está en una red
- Cómo saber cual es el siguiente salto?
 - > Para eso tenemos la tabla de rutas, nos dice como ir a cada posible dirección (o a cada posible prefijo)
- Qué hacemos cuando sabemos el siguiente salto?
 - > El siguiente salto si tiene que ser un vecino
 - > Se le envía al vecino el paquete IP, ese paquete IP va al vecino pero no tiene como destino la dirección IP del vecino así que el vecino lo reenviará

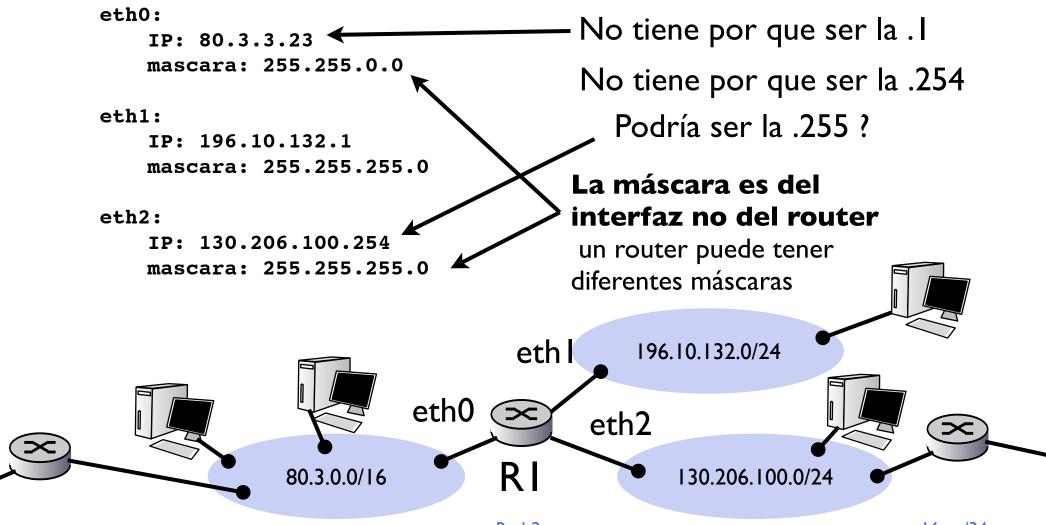
Red-2 13 /34

Problemas


- Cómo saber si el destino es un vecino o no de este router?
- Las direcciones en la red se usan en bloques con prefijo común
 - > Cada router sabe que bloques tienen las redes de area local a las que esta conectado
 - Si un paquete va a uno de estos bloques hay que enviarlo en esas redes de area local
 - > Si no hay que enviarlo a otro router

Red-2 14 /3-

Redes y máscaras


- Para almacenar las redes vecinas (y para las tablas de rutas) el nivel IP utiliza la máscara para extraer el prefijo de una IP destino
 - Almaceno por cada interfaz mi dirección IP y una máscara (al aplicar la mascara a la dirección IP obtengo el prefijo)

Red-2 15 /3-

Redes y máscaras

 En este caso el router R1 tendrá las siguientes configuraciones en sus interfaces

Red-2 16 /34

Configuración de IP

- Cada interfaz del nivel IP se configura con
 - Una dirección IP
 Indica que paquetes debo recibir y que IP origen debo enviar
 - Una máscara de red
 Indica quienes son mis vecinos
 Que IPs hay en la misma red de área local
- Con esto es suficiente para comunicarse con la subred

Red-2 17 /3-

Configurando IP

Ejemplos configuración de IP

> En Linux

> En CiscolOS

```
# sh interface ethernet 0
Ethernet0 is up, line protocol is up
Hardware is QUICC Ethernet, address is 0004.2721.e196 (bia 0004.2721.e196)
Internet address is 10.1.1.247/24
MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
[...]
```

Red-2 18 /34

La tabla de rutas

- Para enviar a otras subredes el nivel IP mantiene una tabla con los caminos a otras redes organizadas por prefijos
 - > Los prefijos se indican/configuran con prefijo y mascara
 - > o con prefijo y numero de bits de la máscara
- Para cada prefijo {dirección y máscara} se almacena el siguiente salto, la dirección IP de un router que reenviará el paquete
- Ejemplo:

```
------ prefijo ----- --- sig salto ---
red mascara
130.206.20.0 255.255.255.0 -> router1
80.10.0.0 255.255.0.0 --> router2
10.0.0.0 255.0.0.0 ---> router1
los demas ------> router2
```

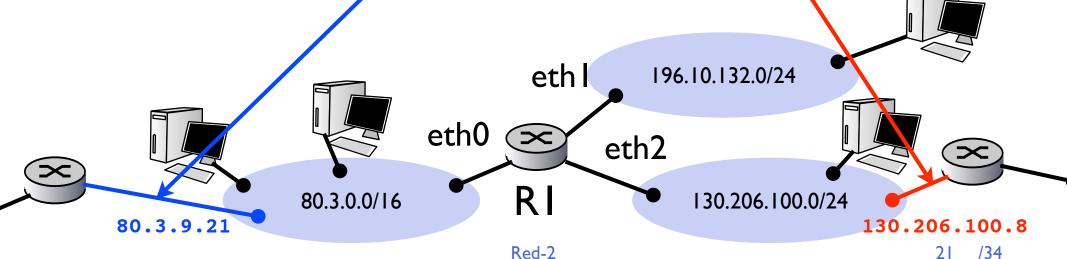
Red-2 19 /34

Más ejemplo

- La tabla almacena una serie de prefijos que se almacenen o se configuren con mascaras o con bits (es indiferente y depende solo de interfaz de usuario)
- Las dos tablas de rutas dicen lo mismo:

El prefijo por defecto es el prefijo que todas las IPs cumplen o sea 0.0.0.0 máscara 0.0.0.0 o bien 0.0.0.0/0

Red-2 20 /34


Tabla de rutas

Pongamos que la tabla de rutas de R1 sea esta

```
------ prefijo ------ --- sig salto ---
red mascara
130.206.20.0 255.255.255.0 -> 130.206.100.8
80.10.0.0 255.255.0.0 --> 80.3.9.21
10.0.0.0 255.0.0.0 ---> 130.206.100.8
default ------> 80.3.9.21
```

Los siguientes saltos tienen que ser direcciones IR vecinas !!

Para que podamos entregarles un paquete a nivel de enlace

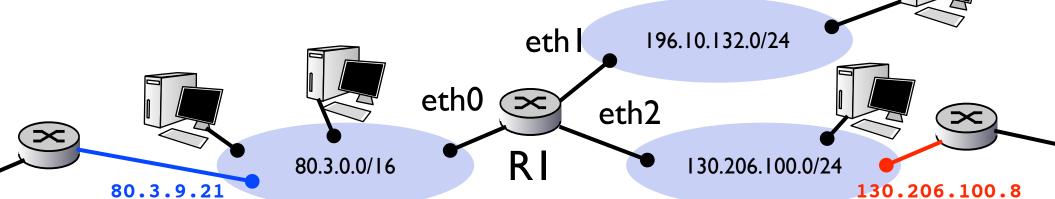


Tabla de rutas

En implementaciones reales sale más información

```
----- prefijo ------ --- sig salto --- -- interfaz --
red
             mascara
130.206.100.0 255.255.255.0
                             conectado
                                               eth2
196.10.132.0
            255.255.255.0
                             conectado
                                               eth1
80.3.0.0
          255.255.0.0
                             conectado
                                               eth0
130.206.20.0 255.255.255.0 -> 130.206.100.8
                                               eth2
           255.255.0.0 --> 80.3.9.21
80.10.0.0
                                               eth0
10.0.0.0
          255.0.0.0 ---> 130.206.100.8
                                               eth2
0.0.0.0
             0.0.0.0 ----> 80.3.9.21
                                               eth0
```

- Aparecen las IPs conectadas a los interfaces
- Aparecen los interfaces de los siguientes saltos
 Es redundante lo importante es el siguiente salto

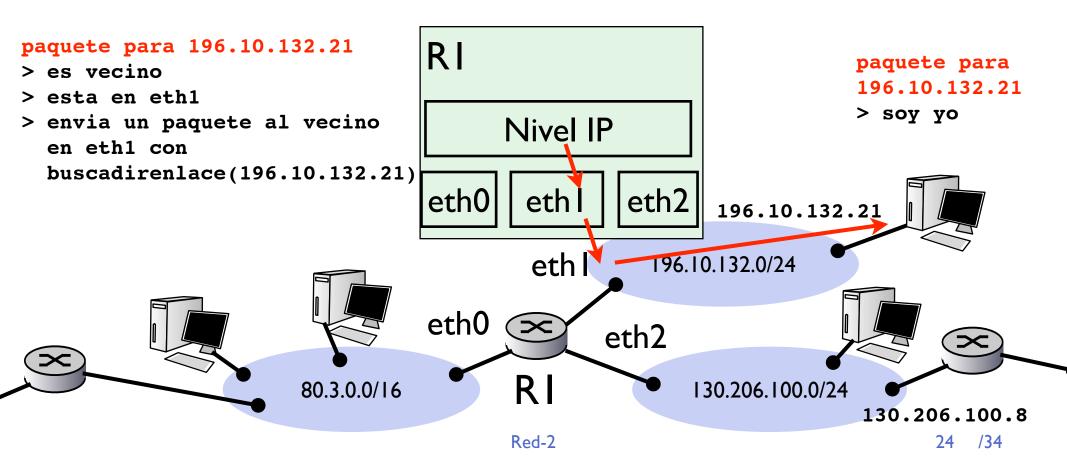
Red-2 22 /34

Enviando un paquete IP

- Se busca la primera entrada de la tabla que coincida.
 - Empezando por las máscaras más restrictiva (segun la implementación la tabla está almacenada en orden más restrictivo o bien se busca en ese orden)
- Si coincide obtenemos el interfaz o el siguiente router

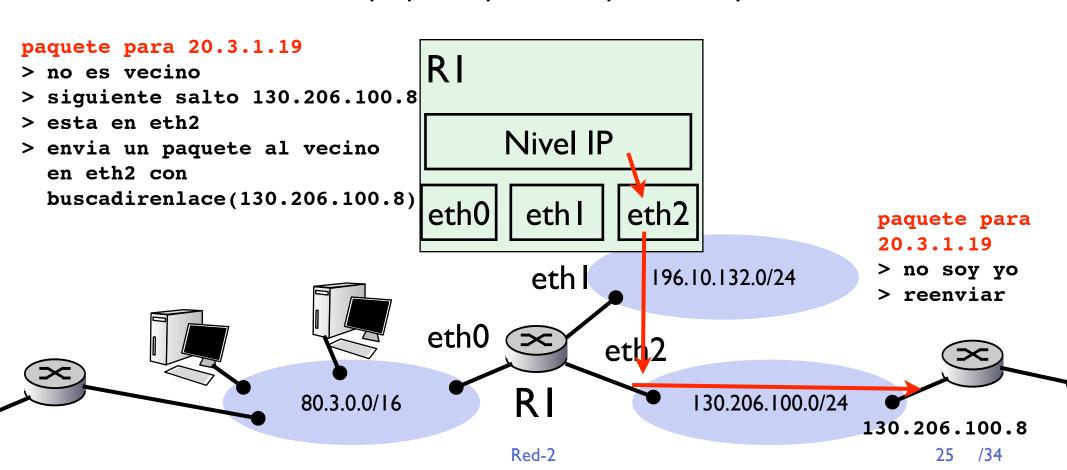
Enviar paquete a	Red	Máscara	GW
10.3.2.23	10.3.2.0	255.255.255.0	eth0
10116	10.3.0.0	255.255.0.0	10.3.2.10
10.1.1.6	10.0.0.0	255.0.0.0	10.3.2.11
12.3.2.10	0.0.0.0	0.0.0.0	10.3.2.100

ARP en Eth0


Enviar al router 10.3.2.1

Enviar al router 10.3.2.100

Red-2 23 /34


Enviando al siguiente salto

- Si el destino es vecino
 - > Se le da al nivel de enlace el paquete IP pidiéndole que lo transmita a ese vecino en el interfaz correspondiente
 - > El vecino recibe un paquete que va para su IP y lo entrega al nivel superior

Enviando al siguiente salto

- Si el destino no es vecino
 - > Se busca el siguiente salto en la tabla de rutas
 - Se le da al nivel de enlace el paquete IP pidiéndole que lo transmita al siguiente salto ese vecino en el interfaz correspondiente
 - > El vecino recibe un paquete que no va para su IP y lo reenvía

La tabla de rutas

- Ejemplos consultando la tabla de rutas
 - > En Linux

```
S route -n
10.1.0.0
                 0.0.0.0
                                  255.255.0.0
                                                                           0 eth0
169.254.0.0
                0.0.0.0
                                  255.255.0.0
                                                                          0 eth0
127.0.0.0
                 0.0.0.0
                                  255.0.0.0
                                                                           0 10
0.0.0.0
                                                                           0 eth0
                10.1.1.1
                                  0.0.0.0
                                                   UG
```

> En CiscolOS

Red-2 26 /34

Construcción de la tabla de rutas

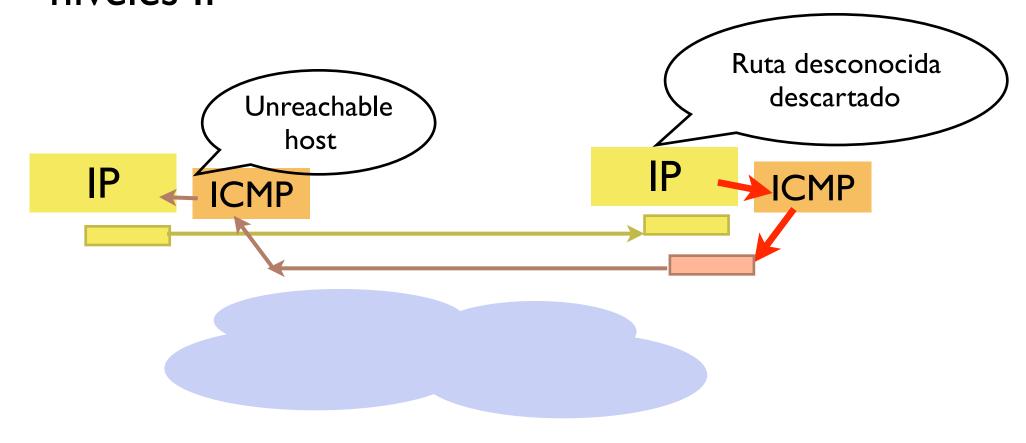
Enrutamiento estático

- = La configura el administrador
- > No se adapta a los cambios, no reacciona ante fallos de enlaces
- > Más fácil en redes simples. Hay pocas redes y siempre está clara la ruta por defecto hacia afuera

Enrutamiento dinámico

- Protocolos de enrutamiento, los routers hablan con sus vecinos y se ponen de acuerdo en las tablas de rutas (Algoritmos de Dijkstra y Bellman-Ford distribuidos)
- > Se adapta a los cambios
- Es mas cómodo cuando todo funciona
- > Problemas de algoritmos distribuidos... puede tardar en estabilizarse la solución, pueden generarse ciclos de enrutamiento...
- > Interesante pero no hay tiempo para ver esto (si tiene interés vea Redes en segundo ciclo de Ingeniería Informática)

Red-2 27 /34

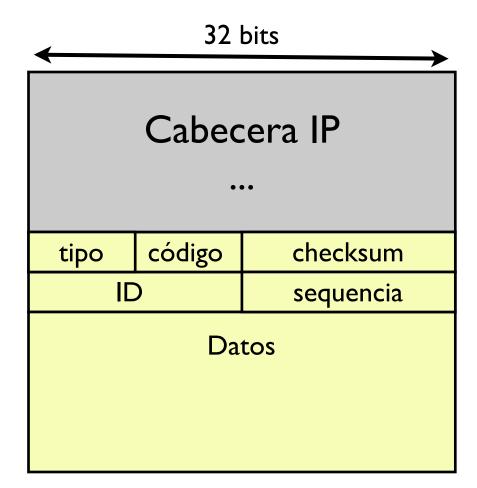

Protocolos de soporte a IP

- Nivel de red en Internet formado por
 - > Protocolo IP + reglas de reenvío (ok)
 - Tabla de rutas (ok)
 - > Protocolos de encaminamiento dinámico (ok)
 - > Protocolos ICMP

Red-2 28 /34

ICMP

Internet Control Message Protocol (RFC 792)
 Protocolo para comunicacion de control entre niveles IP



Red-2 29 /34

Formato de paquete ICMP

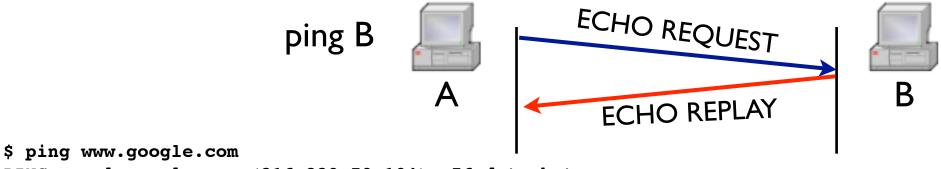
Protocolo sobre IP

- tipo y codigo del mensaje
- id y secuencia para identificarlo
- > checksum de la cabecera

Red-2 30 /34

ICMP: tipos y códigos de los mensajes

<u>tipo</u>	<u>código</u>	<u>description</u>		
0	0	echo reply (ping)		
3	0	dest. network unreachable		
3	1	dest host unreachable	Informar de	
3	2	dest protocol unreachable		
3	3	dest port unreachable	errores	
3	6	dest network unknown		
3	7	dest host unknown		
4	0	source quench (congestion con	trol - not used)	
8	0	echo request (ping)		
9	0	route advertisement	, .	_
10	0	router discovery	control re	outers
11	0	TTL expired	l	
12	0	bad IP header	Informar de	
			errores	


+ ECHO REQUEST/REPLAY

Red-2 31 /34

Ping

Mediante ICMP se ofrece el servicio de Ping

- Si un nivel ICMP recibe un paquete ECHO REQUEST
- > Responde con un paquete ECHO REPLAY al origen
- Útil para gestión y mantenimiento de la red, permite averiguar si hay un host en una dirección IP dada (y cuanto retardo hay hasta ella)


```
PING www.l.google.com (216.239.59.104): 56 data bytes

64 bytes from 216.239.59.104: icmp_seq=0 ttl=242 time=196.928 ms

64 bytes from 216.239.59.104: icmp_seq=1 ttl=242 time=197.240 ms

64 1124636694.904248 IP 192.168.1.33 > 216.239.59.104: icmp 64: echo request seq 0

64 1124636695.100972 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 0

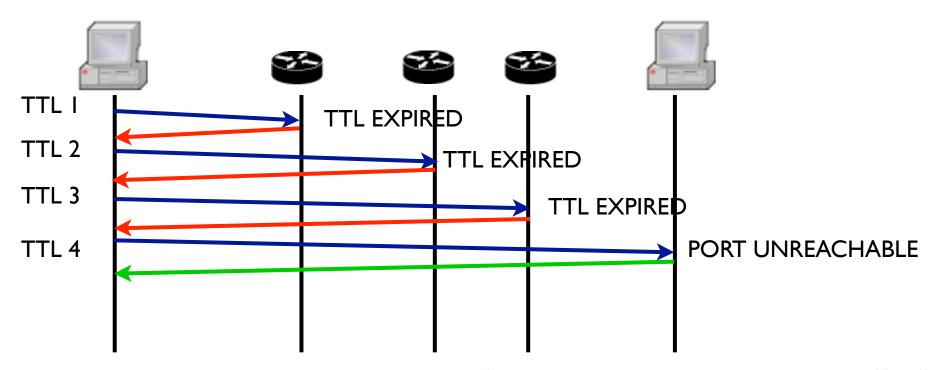
65 1124636695.904467 IP 192.168.1.33 > 216.239.59.104: icmp 64: echo request seq 1

66 1124636696.101508 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 1

67 1124636696.904678 IP 192.168.1.33 > 216.239.59.104: icmp 64: echo reply seq 2

68 1124636697.101080 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 2

69 1124636697.101080 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 2


60 1124636697.101080 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 2

61 1124636697.101080 IP 216.239.59.104 > 192.168.1.33: icmp 64: echo reply seq 2
```

Neu-Z 3Z

Traceroute

- Sistema parecido al ping pero averigua todos los saltos
 - > Usa UDP sobre IP (podría tambien usar ICMP ECHO)
 - > Envía paquetes al destino con TTL incrementandose
 - > El router que tira el paquete envia un ICMPTTL EXPIRED

Red-2 33 /34

Conclusiones

- El protocolo IP reenvía los paquetes a los routers vecinos o al destino final
 - > Para ello debe saber quien esta en su red de area local
 - > Necesita configuración una dirección, una máscara
 - > y la tabla de rutas
- ICMP permite enviar errores y mensajes de control entre niveles IP
 - va sobre paquetes IP
 - > permite algunas uttilidades: ping, traceroute

Próxima clase:

Nivel de enlace

Red-2 34 /34