

6. Sistemas de alta disponibilidad

Servicios Telemáticos Avanzados 4º Grado en Ingeniería en Tecnologías de Telecomunicación Especialidad de Telemática

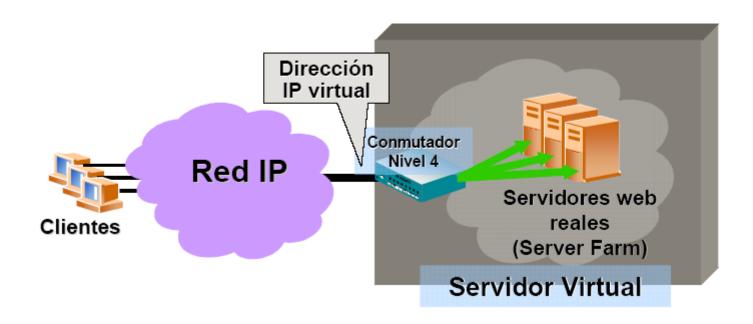
Indice

Hora 1

- 1. Introducción
- 2. Granja de servidores
- 2.1 Balanceo de carga por rotación DNS
- 2.2 Balanceo de carga por reparto cooperativo
- 2.3 Switch de balanceo de carga
- 3. CPD (Centro de procesamiento de datos)
- 3.1 Hardware

Hora 2

- 3.2 Virtualización
- 3.3 Red para CPDs
- 3.4 Múltiples conexiones de acceso a Internet (multi-homing)
- 4. Computación en la nube (cloud computing)
- 5. Redes definidas por software redes activas
- 6. Overlay Networks


1. Introducción

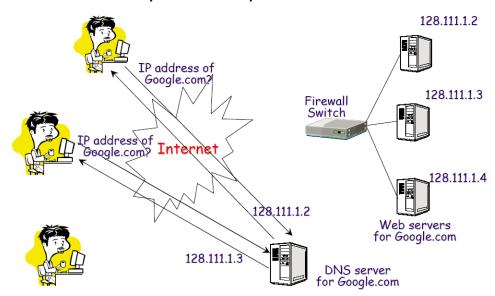
- Muchas veces la utilización de un CDN no es factible o útil por
 - Tener un público objetivo geográficamente localizado (p.e. compañía local)
 - Tener un público potencial no muy elevado
 - Querer tener control absoluto de la privacidad de los datos (p.e. bancos)
 - Tratarse de contenidos en su mayoría dinámicos (p.e. tienda online)
- Para un servicio controlado y centralizado, las granjas de servidores se convierten en una alternativa real. Se busca:
 - Eficiencia
 - Fiabilidad
 - Seguridad
 - Privacidad

2. Granja de servidores

- Permiten crear potentes servidores "virtuales" a base de unir varios servidores físicos.
- Ventajas:
 - Transparente para los clientes (dirección IP virtual)
 - Los servidores están replicados
 - Balanceo de carga, comprobación de disponibilidad de servidores

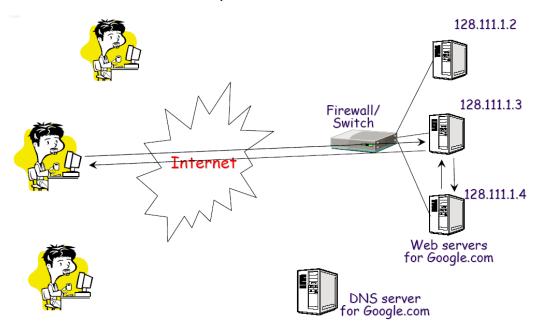
Granja de servidores

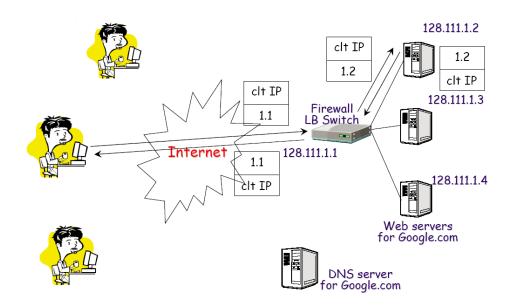
- Factores a la hora de enviar la petición a un servidor u otro:
 - Round-Robin
 - Según la carga de cada servidor
 - Según el número de peticiones pendientes por servidor
 - Según la dirección IP origen
 - Según el TTL a la dirección IP origen
- Tipos de balanceo de carga:
 - Rotación DNS
 - Reparto cooperativo
 - Switch de balanceo de carga



2.1 Balanceo de carga por rotación DNS

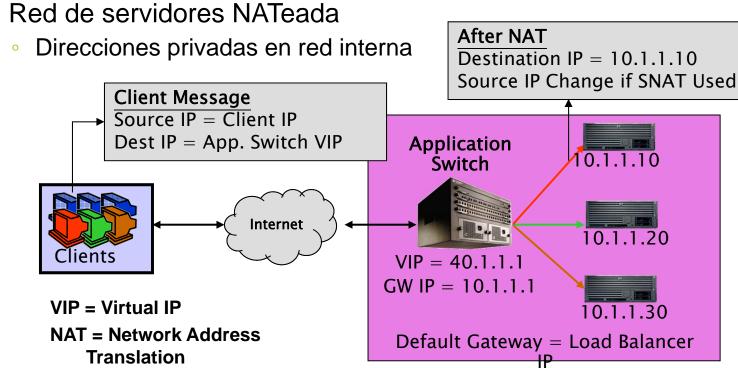
Rotación DNS

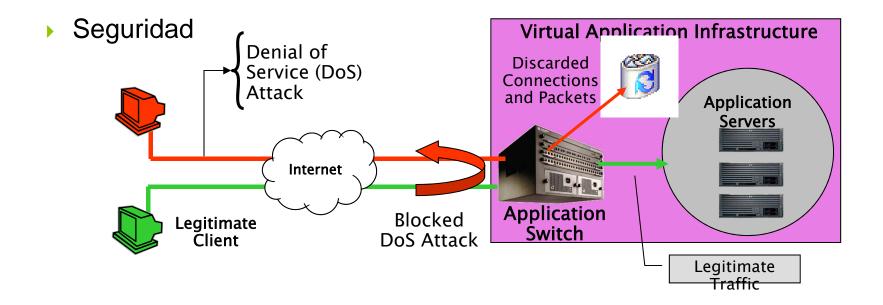

- Transparente para el creador del servicio y para el usuario, pero no para el navegador que se conecta cada vez a diferente dirección IP.
- Problemas
 - Caché DNS
 - Poca flexibilidad, las peticiones de un origen siempre van al mismo servidor.
 - No se puede ajustar a cambios de carga en tiempo real.
 - Lento o incluso no es capaz de responder ante fallos.

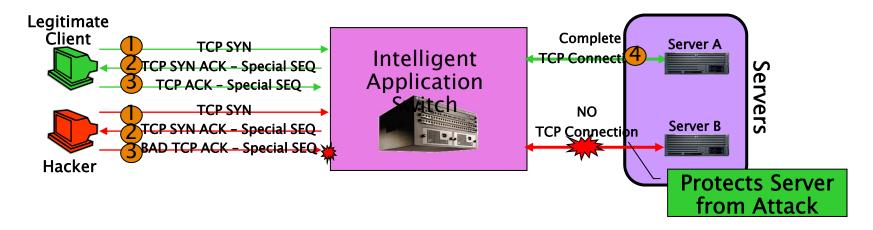


2.2 Balanceo de carga por reparto cooperativo

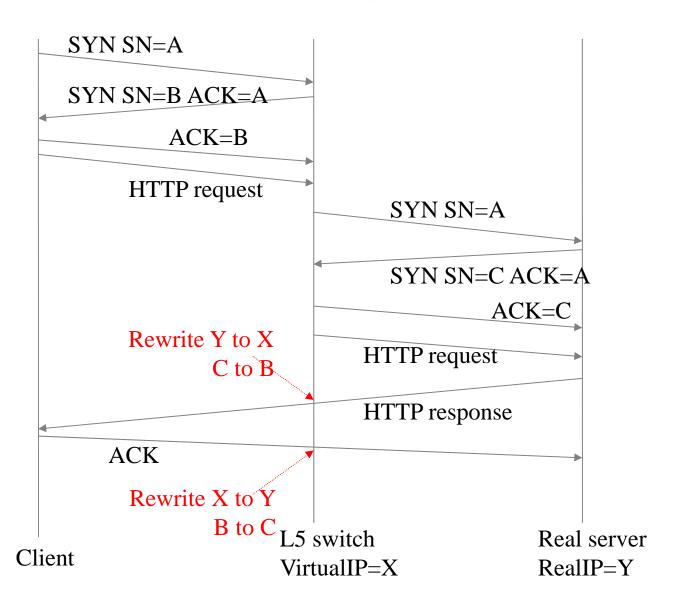
- Reparto cooperativo (cooperative offloading)
 - Un servidor (maestro) se encarga de atender todas las peticiones y en caso de no poder hacerlo las reenvía a otros servidores
 - Más flexible y con capacidad de reacción según el estado de servidores o situaciones de fallo
 - Problemas:
 - Nuevo software: no es el diseño habitual de las aplicaciones
 - Aumenta el retardo en atender las peticiones


- Un equipo de balanceo de carga realiza las funciones de proxy inverso / publicador repartiendo nuevas peticiones a los servidores adecuados.
- Flexible y con capacidad de reacción evitando introducir excesivo retardo en el procesado.
- Problema:
 - Proxy: 2 conexiones TCP cliente-switch switch-servidor




VIP (Virtual IP address)

SNAT = Source NAT



- Switch a nivel 4:
 - No termina conexiones/flujos a nivel de transporte, únicamente reescribe cabeceras
 - Selección de servidor según políticas de
 - Mejor servidor disponible
 - Aleatorio
 - Round Robin
 - Weighted Distribution (estático/dinámico)
 - Menos conexiones
 - Menos paquetes
 - Menos ocupado: carga cpu, red, otros recursos
 - Persistencia, conectar el mismo cliente siempre al mismo servidor
 - Al nivel de conexión TCP siempre va a ser necesario
 - También para diferentes conexiones de una misma transacción (por ejemplo, proceso de una compra online)
 - Siempre es prioritario respecto al resto de políticas
 - Diferenciación de servicios, para diferentes clases de usuarios (por ejemplo, oro/plata/bronce)

- Switch a nivel 7: examinan datos de nivel de aplicación, por ejemplo para la web la URL, cabeceras HTTP, cookies, etc.
 - Termina conexiones/flujos para poder analizar datos de aplicación antes de reenviar las peticiones al servidor correcto
 - Por ejemplo, en web necesitaría recibir la cabecera HTTP GET
 - Selecciona el servidor según el tipo de contenido requerido (imágenes, vídeos, contenidos dinámicos, etc.)
 - Permite dimensionar de forma diferente cada servidor según los contenidos que suministre
 - Contenidos estáticos se pueden cachear en el propio switch de balanceo de carga a nivel 7: reverse proxy
 - Chequeo de salud continuo de los servidores
 - Pasivo: observando los tiempos de respuesta en las peticiones de clientes cada servidor
 - Activo: iniciando peticiones contra los servidores desde el propio switch o monitorizando parámetros de funcionamiento de los mismos

Switch de balanceo de carga, unión conexiones

Switch de balanceo de carga, redundacia

- No se tiene que convertir en un único punto de fallo
- Virtual Router Redundancy Protocol (VRRP) [RFC 2338] permite tener switches de balanceo de carga replicados con intercambio constante de estado
 - Existen otros protocolos propietarios
- Funcionamientos:
 - Activo/Pasivo: todas las peticiones atraviesan un switch pero uno secundario en modo pasivo también tiene copia del mismo tráfico para en el momento de fallo del primero poder entrar a funcionar
 - Activo/Activo: varios switches se reparten la carga de peticiones estando todo en funcionamiento y con capacidad de absorver la carga de un switch que fallase

3. CPD (Centro de procesamiento de datos)

CPD: ubicación donde se concentran los recursos necesarios para el procesamiento de la información de una organización. También se conoce como centro de cálculo en España o centro de datos por su equivalente en inglés data center.

CPD BBVA 2012

CPD

Ubicación geográfica

- Coste económico: coste del terreno, impuestos municipales, seguros, coste eléctrico, coste de datos, etc.
- Infraestructuras disponibles en las cercanías: energía eléctrica, carreteras, acometidas de electricidad, centralitas de telecomunicaciones, bomberos, etc.
- Riesgo: posibilidad de inundaciones, incendios, robos, terremotos, etc.

Recursos internos:

- Falsos suelos y falsos techos
- Cableado eléctrico y de datos redundante
- Sistemas de alimentación ininterrumpida
- Refrigeración
- Sistema anti-incendios: no agua, protección de equipos

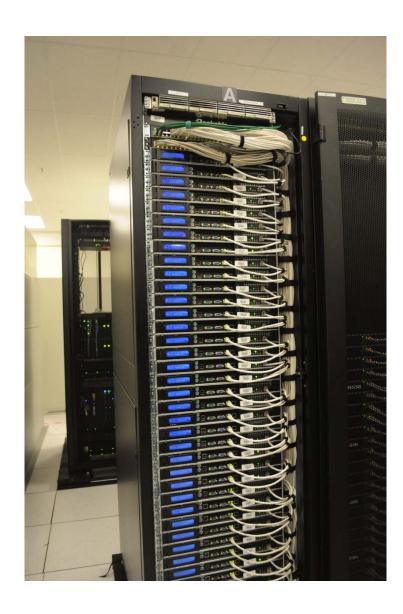
Recursos externos:

- Múltiple acometida eléctrica y de datos
- Seguridad en los accesos
- Medidas de seguridad en caso de incendio o inundación: drenajes, extintores, vías de evacuación, puertas ignífugas, etc.

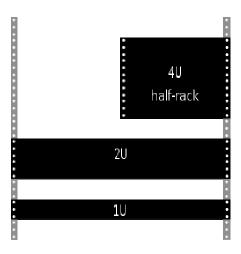
CPD

CPDs duplicados

 Un centro de respaldo es un centro de procesamiento de datos (CPD) específicamente diseñado para tomar el control de otro CPD principal en caso de contingencia


Racks

- Anchura estándar 19" (48,26cm)
- Profundidad y altura no normalizada
- Altura medida en U=unidades de rack, 1,75" = 4,44cm
 - Encontramos equipos en formato de rack con altura de 1U, 2U, 3U...
 según el espacio que requieran
 - · La electrónica de red también sigue este estándar



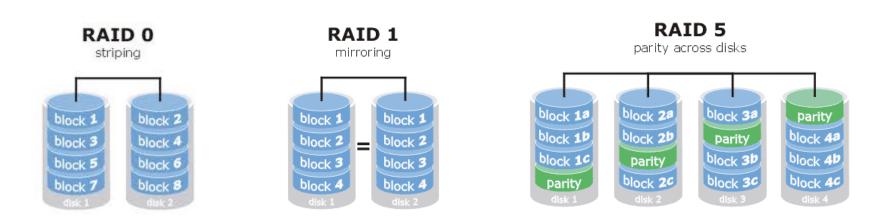
CPD

SERVICIOS TELEMÁTICOS AVANZADOS Área de Ingeniería Telemática

http://www.youtube.com/watch?v=avP5d16wEp0

SERVICIOS TELEMÁTICOS AVANZADOS Área de Ingeniería Telemática

CPD


- Arquitectura modular de CPDs
 - Contenedores autosuficientes

3.1 Hardware

- El hardware de servidor en principio puede ser el de una arquitectura convencional pero normalmente con características avanzadas:
 - Hot-plug: componentes enchufables en caliente, como discos duros, fuentes de alimentación, etc.
 - Elementos redundados: fuentes de alimentación, discos duros (RAID, Redundant Array of Independent Disks), tarjetas de red, etc.
 - Sistemas de almacenamiento masivo independiente: cabinas de almacenamiento NAS (Network-attached storage)

Hardware

- También se encuentran ordenadores de propósito general haciendo funciones de servidor gracias a repartir tareas en muchos equipos diferentes
 - Si un equipo falla automáticamente hay otro que puede tomar sus funciones
 - Permite un despliegue a menor coste
 - Ejemplo: Google

 Encaja bien con arquitecturas multicapa con múltiples aplicaciones corriendo de forma coordinada en diferentes equipos para proveer el servicio

Google Search Appliance (GSA)

Google server en sus CPDs

