
On the combined e�ect of

self-similarity and ow control in

quality of service for

transactional Internet services.

Javier Aracil, Daniel Morat�o and Mikel Izal
Dpto. Autom�atica y Computaci�on
Universidad P�ublica de Navarra

Campus Arrosad�ia s/n
31006 Pamplona, Spain
Tel: +34 48 16 97 33
Fax : +34 48 16 92 81
email: fjavier.aracil, daniel.morato, mikel.izalg@upna.es

Abstract

In this paper we show that the combined e�ect of heavy-tailedness and ow
control leads to considerable transaction delays. Neither heavy-tailedness nor
ow control separately imply a signi�cant degradation in quality of service.
We consider transactional Internet services such as WWW and relate user
perceived quality of service to total transaction delay instead of packet or cell
instantaneous delay [2]. We evaluate transaction delay by simulation of an
IP over ATM link in which a large number of users are multiplexed and we
compare to M/G/1 analysis. Our tra�c model assumes heavy-tailed features
in �le sizes and a constant rate for packet interarrival times within transac-
tions. We show that an in increase in bandwidth assignment, i.e. a decrease
in link utilization factor, does not translate into a signi�cant performance
improvement. However, an increase in window size proves more e�ective.
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1 INTRODUCTION AND PROBLEM STATEMENT

Nowadays, we are witnessing a huge demand of Internet services like the World
Wide Web. Internet tra�c self-similarity poses new challenges regarding band-
width allocation, billing and pricing for Internet services. Tra�c burstiness is
preserved at any time scale, in contrast to short-range dependent models such
as the Poisson process. Queueing analysis with self-similar input is an active
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research area since network dimensioning for Internet services has became a
very important issue. However, performance metrics are obtained at the cell
or packet level : bu�er overow probability and delay estimates under self-
similar input [4, 7, 9, 10]. Bu�er overow probability and delay at the packet
or cell level may not be an adequate QOS metric for service provisioning. Lit-
tle literature exists on QOS metrics that relate Internet user satisfaction and
network parameters such as end-to-end delay and bandwidth. David Clark ad-
dresses this issue in [2], arguing that user satisfaction grows with transaction
throughput. Namely, a large instantaneous bit rate is useless unless such bit
rate is mantained during the whole transaction. Since it is possible to know
the �le sizes before the transaction takes place bandwidth allocation can be
done beforehand. If we consider transaction duration as the valid QOS metric
a detailed analysis at the transaction level is needed.
Transactional services (FTP-data and WWW) represent the most impor-

tant part of Internet tra�c [8, 1, 3]. Pareto distributions prove accurate to
model �le size and transmission duration for FTP-data and WWW [8, 1, 3].
Inactivity periods of a single user turn out to be heavy-tailed as well [11]. This
approach leads to an on-o� model with heavy-tailed distribution to model in-
dividual users. The multiplex of a large number of users shows exponential
behavior in the transaction interarrival times [1, 6]. The transaction arrival
process in the busy hours can be modeled approximately as a Poisson process.
Nabe et al. [6] show that Poisson arriving heavy-tailed bursts constitute an
accurate tra�c model for busy hours of WWW service.
Tsybakov and Georganas show in [10] that Poisson arriving heavy-tailed

batches with constant cell rate within the batch lead to an asymptotically
second order self-similar process. If we consider Tsybakov and Georganas
model, a transaction level analysis of a multiplex of a large number of users
in a single virtual circuit can be undertaken using the well-known M/G/1
or M/G/1/PS model [6]. Furthermore, the M/G/1 model provides a simple
framework to explain how self-similarity a�ects user perceived QOS. Since �le
sizes are heavy-tailed the service time squared coe�cient of variation (namely,
variance normalized by the squared mean [5, page 187]) is large and degrades
performance. Other factors such as TCP ow control also make such squared
coe�cient of variation increase since transaction duration increases due to
source active waiting periods.
In this paper we show that the joint e�ect of a simple window ow con-

trol mechanism and heavy-tailed �le sizes causes a signi�cant performance
drop, even in a small roundtrip delay environment. However, neither the for-
mer nor the latter separately degrade QOS in a so signi�cant manner. Our
methodology consists of simulations using a single virtual circuit model and
comparison to M/G/1 analysis. We evaluate network contribution to QOS
perceived in contrast to other factors such as heavy-tailed �le sizes. Our �nd-
ings suggest that network parameters such as window sizes may be tuned to
provide a better QOS.
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The rest of this paper is structured in three parts: section 2 explains our
tra�c model and simulation setup, section 3 presents the results and dis-
cussion and section 4 presents the conclusions that can be drawn from this
study.

2 USER TRAFFIC MODEL AND SIMULATION SETUP

Our simulation setup is shown in �gure 1. We consider a large population
of users whose tra�c is being multiplexed over the same link with a unique
queue. That is the common situation for Internet Service Providers (ISPs)
and corporation and academic networks: the edge router is con�gured with a
unique constant bandwidth VP/VC to the ATM cloud and a unique inbound
queue to the users. We will assumme that both queues have in�nite capacity.
IP packets are segmented into ATM cells but there is no cell interleaving from
di�erent IP packets.

User 1

User N

ATM
cells

IP packets

ATM
Network

Server

Server

Server

Proxy or
multiplexer

Figure 1 Simulation setup

We evaluate the input queue to the router from the ATM cloud because
Internet tra�c is highly asymmetric. We assumme that �le transfer queries
(GET commands) are issued from the users population. In response to such
queries the bulk tra�c stream comes in the inbound direction. Transaction
duration and size (bytes) are both heavy-tailed [1, 3, 6].
Our sliding window ow control mechanism resembles TCP behavior: Each

ACK packet acknowledges all transmitted packets whose sequence numbers
are smaller than or equal to the sequence number announced by the ACK
packet. The tra�c source stops transmission whenever the negotiated window
is full of unacknowledged packets. Such behavior is typical of transport layer
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protocols such as TCP. TCP also incorporates a congestion control algorithm
known by Slow Start. At any given transmission time the minimum between
the ow control window and the congestion control window is selected by the
TCP protocol agent as the actual transmission window. The value of the ow
control window is negotiated at the connection establishment phase (SYN
PDUs). Note that the negotiated ow control window determines the maxi-
mum size of the transmission window. Even if the congestion control window
eventually allows for a larger transmission window size the negotiated ow
control window imposes a limit. We will show later that small window sizes
imply performance penalties. Slow start makes transmission window decrease
if congestion is detected.
We will assume no packet loss in the transmission link, i. e. no retransmis-

sions. We aim at showing the inuence in network performance of a simple,
yet explanatory, sliding window ow control algorithm in presence of heavy-
tailedness in �le sizes. Our simple model represents a best-case model in com-
parison to TCP since for the latter the transmission window can take values
smaller than the negotiated ow control window due to the congestion con-
trol algorithm, as explained before. Note that unacknowledged packets may
su�er considerable queueing delays in high load situations. If the ow control
window is full of unacknowledged packets such queueing delays are partic-
ularly harmful because the source gets stopped until new acknowledgments
are received. Note that even though ow control is performed on an end-to-
end basis a unique queue is shared by all sources. We observe two di�erent
contributions to transaction duration: queueing delay, that depends on the
utilization factor and service time squared coe�cient of variation (M/G/1)
and ow control delay, which increases transaction delay each time an ACK
is needed from the destination in order to alleviate the ow control window
of unacknowledged packets.
We will assume a roundtrip delay of 0.01 s., which is a reasonable empirical

value for TCP connections within a statewide network. Larger RTDs, such as
the ones for overseas connections would make transaction duration increase.
Once the simulation scenario is de�ned we are faced with the selection of

a tra�c model that accurately portrays user behavior. Several studies show
that an on-o� model with heavy-tailed on-o� periods is accurate to model a
single user behavior for Internet bulk data transfer services (i.e. WWW and
FTP-data) [11]. The heavy-tailed nature of the on period is mainly due to
the Internet �le sizes distribution while o� periods are related to user think
time. File sizes variance and mean depend on the media: text, images, sound
or video �les [6]. Considering the multiplex of di�erent types of �les in a real
trace a mean value in the range of 50 KB can be adopted for WWW services
[3].
Fluid-ow on-o� models assumme that the time to transfer a �le equals

�le size divided by link capacity, namely no time gaps between packet trans-
missions. However we do not use a uid-ow model for activity periods since
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transmission time is larger than �le size divided by link capacity. The oper-
ating systems and network interface cards impose limitations in the packet
interarrival times so that a larger service time for a transaction is observed.
In order to evaluate interpacket spacing, we perform a number of WWW
transactions between a client and server stations in two di�erent situations:
dedicated LAN and departmental network. The client WWW cache is set to
zero bytes so that we always enforce transmission.
We perform two di�erent measurement experiments: the �rst one in a ded-

icated Ethernet of a SUN workstation and a PC, the second one is taken
with both client and server in the departmental network in the busy hour.
We perform a total of 600 transactions with �le sizes ranging from 10 KB
to 3 MB with a 100 KB step size. Our departmental network is not isolated
by a router to the campus backbone so that we receive the tra�c multiplex
of approximately 900 hosts. The results show packet interarrival times in the
vicinity of 1.5 ms (P (interarrivaltime < 1:5ms) = 0:85) so that a signi�cant
deviation from a uid-ow behavior is not observed. A 1500 bytes (Ethernet
MTU) packet transmission time is 1.2 ms for a 10 Mbps Ethernet. However,
the cumulative e�ect for large �le transmissions can be signi�cant. In order
to have a better picture of packet-level transmission we plot in �gure 2 the
measured transaction duration and the same transaction duration assuming
a uid-ow model and a constant rate packet transmission (1500 bytes) with
interarrival times equal to 1.5 ms and 5 ms. Note that signi�cant deviations
can be observed specially with large �le sizes. Therefore, we adopt the discrete
model (constant packet rate within the bursts) in contrast to the uid-ow
model.
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Figure 2 Transaction duration: real trace, uid-ow model and constant
packet rate model (1.5 ms and 5 ms). Right: dedicated network, left: depart-
mental Ethernet

As far as the transaction arrival process is concerned, we assume that the
multiplex of a large number number of independent arrivals converges to a
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Poissonian model. However, such connection arrival process has little inuence
in our analysis.
As stated before, Tsybakov and Georganas show in [10] that a Poisson

batch arrivals process with heavy-tailed batches and constant cell rate is an
asymptotically second order self-similar process. Therefore, we are considering
a self-similar model in our simulation setup.
One important factor in our analysis is the ow control window size value

(Kbytes). We collect a tra�c trace to determine what is the typical window
size value in the TCP ow control algorithm for transactional Internet services
such as FTP-data and WWW.
The trace is obtained from Public University of Navarra campus network,

that consists of a high-speed backbone (FDDI) and approximately 30 de-
partmental Ethernets. The estimated number of hosts connected is 900. The
analyzed trace comprises 244,568 FTP-data and WWW connections recorded
during 12 hours. Interestingly, the probability mass function shows two out-
comes that dominate the sample: 8760 bytes and 31744 bytes with a proba-
bility of 0.61 and 0.33 respectively. Thus, we consider window sizes of 8 KB,
16 KB and 32 KB for our simulation experiments.
Our conclusions about the tra�c model can be summarized as follows.

Since we consider a large population of users we choose a Poisson transaction
arrivals model in which �le sizes are heavy-tailed. Furthermore, we consider
that �le sizes follow the Pareto law since such distribution models accurately
transaction sizes (bytes) for FTP-data and WWW services [1, 3]:

fX (x) = �k�x���1 (1)

where k represents the minimum batch size, which we adjust to a value of
1000 bytes. The parameter � relates to the batch size heavy-tailedness and,
ultimately, to the service time variability. A value of � in the range 1 < � < 2
would produce self-similarity features in the packet counting process [10]. We
truncate the �le size distribution in equation 1 to a maximum value of 10 MB.
The probability of such maximum �le size in a WWW or FTP transaction is
around 10�7 [1, 3]. Such truncation permits the calculation of the variance
and coe�cient of variation. On the other hand, the truncated distribution
resembles accurately the �le sizes distribution in the Internet. Crovella et al.
report a value of � for WWW transactions approximately around 1:1 [3].
In previous studies we report a value of � = 1:28 for FTP-data transfers,
considering a sample size of four days worth of IP tra�c from the UC Berkeley
campus network (439 Mpackets, 69 Gbytes) [1]. Finally, we assumme Ethernet
rates (10 Mbps) for the capacity assigned in the inbound queue and constant
size packets of 1500 bytes (MTU size).
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3 RESULTS AND DISCUSSION

In this section we present simulation results and discussion. We perform three
di�erent simulation experiments with a �nite horizon simulation (24 hours
simulated time):

� Experiment one: we analyze the e�ect of ow control with �xed size

batch. A �xed size batch is the best case regarding service time (M/D/1)
so that it should provide the best performance �gures as far as transaction
delay is concerned. Our aim is to show that the inuence of ow control in
QOS is not signi�cant if �le sizes are deterministic.

� Experiment two: we replace the �xed-size batch by a heavy-tailed batch

with no ow control. We show that the e�ect of heavy-tailed �le sizes is
not so signi�cant for QOS if ow control is not activated.

� Experiment three: we assume heavy-tailed �le sizes and 8 KB, 16 KB

and 32 KB ow control window sizes. We show that the e�ect of ow
control in presence of in�nite variance of �le sizes is dramatic. Our �ndings
show that an increase in window size translates into a very signi�cant
performance improvement.

3.1 Fixed size �le sizes and ow control

Figure 3 shows transaction delay for �xed size (50 KB) �les and di�erent
values for the ow control window size (4, 16 and 32 KB). Furthermore the
M/D/1 results are also shown for comparison purposes.
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Figure 3 Fixed-size �le sizes. Right: 5 ms packet interarrival times, left: 1.5
ms packet interarrival times

Let � be the utilization factor, B the �le size in bits and C the link capacity
in bps. Let � be the joint arrival rate of the multiplex of users and let the
utilization factor be � = �B=C.
It is important to note that the time to transfer a �le is not equal to �le



8 On the combined e�ect of self-similarity and ow control in QOS for Internet services

size divided by link capacity. Such time can be computed as the total time
to transfer a �le taking into account real packet interarrival time (see �gure
2). Let tp be the packet interarrival time (1.5 ms or 5 ms in �gure 3) and M

the MTU size in bytes (1500 bytes) then the time to transfer a �le x equals
x = (B=M) � tp. The average transaction duration, considering a uid-ow
model in which service time equals time to transfer a �le (x) is given by:

T = x

�
1 +

�

2(1� �)

�
(2)

Interestingly, curves di�er considering 1.5 and 5 ms packet interarrival
times. As far as the latter is concerned some statistical multiplexing gain
can be observed at the packet level in comparison to the uid-ow model.
Such gain is neglectable at 1.5 ms packet interarrival time since this time is
too close to the packet transmission time (1.2 ms). User perceived quality of
service can be estimated with the simple M/D/1 model at the expense of an
estimation error in the range of 10�1 seconds.
Furthermore, we observe that no signi�cant di�erences in comparison to

the M/D/1 case are observed if packet interarrival time is close to packet
transmission time (1.5 ms in comparison to 1.2 ms.) and window sizes are
large. Intuitively, the performance drop due to ow control depends on the
ratio (�le size)/(window size). A combination of large �le sizes and small ow
control windows makes the probability of source active waiting increase. The
worst ratio shown in �gure 3 is around 10 (4 KB window size and 50 KB �le
size). Same results can be observed if window size and �le size are increased
mantaining the same ratio.

3.2 Heavy-tailed �le sizes and no ow control

In this section we evaluate the e�ect of heavy-tailed �le sizes with no ow
control. Figure 4 shows the average transaction duration with a heavy-tailed
�le size (� = 1:05; 1:2; 1:6) and no ow control. Probability of transaction de-
lay beyond 10 seconds and measured utilization factor versus the transaction
arrival rate are also presented. The results match our intuition: the smaller
the value of � the larger the squared coe�cient of variation and, therefore,
smaller values of � imply performance degradation.
The results shown in �gure 4 are rather striking: the performance drop

caused by �le sizes variability is not so signi�cant as far as QOS perceived by
user is concerned. Values of � equal to 1.05, 1.2 and 1.6 give approximately
the same performance �gures (compare with �gures 5 and 6). In the next
subsection we evaluate the e�ect of ow control in a heavy-tailed �le sizes
scenario.
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Figure 4 Utilization factor (left), mean transaction duration (center) and
probability of transaction duration beyond 10 s. (right). Heavy-tailed �le sizes
and no ow control. Top: 1.5 ms packet interarrival times, bottom: 5 ms packet
interarrival times

3.3 Heavy-tailed �le sizes and ow control

Figures 5 and 6 (1.5 and 5ms respectively) show the performance degrada-
tion su�ered by introducing ow control in a heavy-tailed �le sizes scenario.
Utilization factor, mean delay and probability of transaction delay beyond a
10 seconds threshold are shown. Note that the typical value reported for � is
in the range 1:0 � � � 1:2 with an estimate of � = 1:1 for the most popular
service in the Internet: the WWW [1, 3]. Utilization factors in the range of 0:4
give unacceptable QOS to users for window sizes of 8 KB. Recall from section
2 that a window size of 8KB dominates in our sample with a probability of
61%. The queue seems to be saturated as far as user QOS perception is con-
cerned even for small utilization factors. However, note that the performance
degradation is due to the combined e�ect of ow control and heavy-tailed �le
sizes. Neither the latter nor the former would produce such performance drop
separately as seen in previous sections.
The mean �le size for a value of � = 1:2 is 50 KB, that gives a ratio of

(�le size)/(window size) equal to 6:2 for an 8 KB window size and equal to
3:1 for a 16 KB window size. Even in the last case we observe a signi�cant
degradation compared to the deterministic �le size scenario with a ratio (�le
size)/(window size) in the vicinity of 10. The heavy-tailed features of �le
sizes increase the probability of large �les present in queue. The performance
penalty implications are twofold: �rst, large �les make the service time squared
coe�cient of variation increase, secondly, since the ratio (�le size)/(window
size) is larger the tra�c source performs active waiting more often.
Considering a 5 ms packet interarrival time (�gure 6) we observe a similar

behavior. Note that the measured performance is slightly worse. Larger packet
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Figure 5 Utilization factor (left), mean transaction duration (center) and
probability of transaction duration beyond 10 s. (right). Heavy-tailed �le sizes
and ow control (top 8 KB window size, center 16 KB window size, bottom
32KB window size, 1.5 ms packet interarrival time).

interarrival times produce an increase in statistical multiplexing gain at the
packet level for small values of utilization factor. However, they also make
time to transfer a �le increase and thus the probability of active waiting for
larger values of utilization factor.

4 CONCLUSIONS

Implications for self-similarity. An important conclusion of this paper is
that the high variability of �le sizes, which generates self-similarity, does not
degrade QOS signi�cantly in presence of in�nite bu�ers and large ow control
window sizes. In the �nite bu�er scenario, the joint e�ect of high variability
in �le sizes and window ow control supposes a signi�cant performance drop
since retransmissions are more likely to occur due to bu�er overow. Such re-
transmissions make transaction duration grow larger and window size decrease
due to the congestion control algorithm.
Implications for billing and pricing TCP services. If we assume that

user perceived QOS is determined by transaction duration, an increase in net-
work bandwidth is not translated directly into user satisfaction. Such increase
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Figure 6 Utilization factor (left), mean transaction duration (center) and
probability of transaction duration beyond 10 s. (right). Heavy-tailed �le sizes
and ow control (top 8 KB window size, center 16 KB window size, bottom
32KB window size, 5 ms packet interarrival time)

would make utilization factor decrease, but note from �gures 5 and 6 that an
increase in window size would signi�cantly contribute to a better QOS at a
lower cost. Therefore, billing for bandwidth may not be an adequate scheme
as far as user perceived QOS.
Finally, the use of window ow control protocols with relatively small win-

dow size may not be justi�ed in an Internet in which workstations and PCs
have a growing capacity of CPU and I/O. New mechanisms for ow con-
trol and selective retransmission have to be investigated in order to meet the
increasing demand for quality of service in the Internet.
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