

On the Use of Balking for Estimation of the Blocking Probability for OBS Routers with FDL Lines

D. Morató and J. Aracil Telematics Engineering group (http://www.tlm.unavarra.es) Public University of Navarre, Pamplona (SPAIN)

daniel.morato@unavarra.es

What is this paper about?

- Blocking probability in OBS switches with FDLs ...
- Analytical models for calculating the blocking probability and dimensioning the switch ...
- The problems in analytical models for computing loss probability in OBS switches with FDLs

Contents

- Short & Fast introduction to OBS
- The problem and the scenario
- Models for the blocking probability
- Balking model: Analysis
- Conclusions

Introduction to OBS

- Halfway between OCS and OPS
- Payload entirely in the optical domain (no O/E/O conversion)
- Aggregation in the edge nodes creates bursts
- Switched path established with the information in the BCPs
- BCPs (Burst Control Packets) are sent before the payload
- BCPs are transmitted through a separated channel
 - BCPs suffer O/E/O conversion

Introduction to OBS

Problem

- Output port contention
- High loss probability
- Optical memory is not available
- One solution: Fiber Delay Lines (FDLs)
- FDLs provide a delay equal to the propagation time (...)

Introduction to OBS

Problem

- Output port contention
- High loss probability
- Optical memory is not available
- One solution: Fiber Delay Lines (FDLs)
- FDLs provide a delay equal to the propagation time (...)
- How long should be the fiber?

The problem

- How long should be the fiber?
- Maximum delay (Length) needed for a target loss probability ?
- Traditional models?

- FDLs are not memory
 - The burst cannot stay for longer than the fiber delay
 - Fiber is available when the burst is completely transmitted
 - Time the FDL is occupied ≠ Time the burst is inside the FDL
 - Time the FDL is occupied depends on the burst size

ICOIN 2006, Sendai

Scenario

- OBS Switch with variable-delay FDLs (D_{max})
- Input traffic:
 - FGN \Rightarrow Poisson arrivals (λ) + gaussian burst sizes [IzalGCOM02]
 - Use exponential sizes (μ) for comparison purposes (1/ μ =15KB)
- Uniform output selection
- Single output port analysis
- "c" data wavelengths (10Gbps) per fiber
- Total wavelength conver. (→multiserver)
- Popular hypothesis [LuTrans04]

[IzaIGCOM02] M.Izal, J.Aracil. "On the influence of self similarity on Optical Burst Switching traffic". Proceedings of Globecom 2002
 [LuTrans04] X.Lu, B.Mark. "Performance Modeling of Optical Burst Switching with Fiber Delay Lines". IEEE Transactions on Communications, Dec 2004

ICOIN 2006, Sendai

c=8, ρ =0.8, 2 FDLs (16 buffers), E[X]=1/ μ =1

Queue with balking

- Continuous-time Markov chain
- State: Number of users in the system
- Balking:
 - Form of impatience
 - User decides whether to join the queue or not
 - Expressed by a decreasing series $\{\beta_k\}$ that mutiplies the arrival rate to each state
- β_k: Probability that an arrival is lost when the system has every channel occupied and k bursts waiting in FDLs

Queue with balking

- β_k: Probability that an arrival is lost when the system has every channel occupied and k bursts waiting in FDLs (discouraged arrival probability)
- Arrival is lost
 - If there are no more virtual buffers available (assume large number)
 - Or if delay before an output wavelength gets free is longer than the maximum delay offered by the FDLs \hat{R} . Time until first but

Time until a wavelength gets free: $T_n = \hat{R} + \sum_{n=1}^{\infty} \hat{U}$

$$R$$
 : Time until first burst
departs
 \hat{U} : Time between
departures

$$P(T_n > x) = P\left(\sum_{i=0}^{n-c} \hat{R} > x\right) = e^{-c\mu x} \sum_{h=0}^{n-c} \frac{(c\mu x)^h}{h!}$$

Erlang Distribution

Known results for this model

Motivation

- In the literature, results only for 1-10 wavelengths
- However, nowadays: 8 wavelengths (CWDM) to I28 wavelengths (DWDM)
 - Our question: Is the model still accurate enough?

Blocking results (fixed c) Different number of wavelengths per fiber

- X-axis: normalized maximum delay (D_{max}/E[X])
- For D_{max}=0: Erlang-B
- As D_{max}/E[X] increases so does the discrepancy between model and simulation (....)

Blocking results (fixed c)

- Different number of wavelengths per fiber
- X-axis: normalized maximum delay (D_{max}/E[X])
- For D_{max}=0: Erlang-B
- As D_{max}/E[X] increases so does the discrepancy between model and simulation (....)
- Percentage of error in the estimation increases with D_{max}/E[X]
- Worse the larger the number of wavelengths !

14/27

Blocking results (fixed D_{max})

- Different values of maximum delay D_{max}
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (....)

Blocking results (fixed D_{max})

- Different values of maximum delay D_{max}
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (....)
- Percentage of error in the estimation increases inverse to ρ (... ...)

Blocking results (fixed D_{max})

- Different values of maximum delay D_{max}
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (....)
- Percentage of error in the estimation increases inverse to ρ (...,)

ICOIN 2006, Sendai

17/27

System residual life

X-axis: Normalized residual life (...)

System residual life

- X-axis: Normalized residual life (...)
- Deviation as the system occupancy grows
- Specially when x gets close to $D_{max}(...)$

Discouraged arrival probability (β_k)

Larger deviation as the system occupancy grows

State probabilities (π_n)

- Discrepancy happens in high occupancy states, hence those with low state probability
- But those are the states where losses take place

What is wrong in the model?

- We assume that the arrivals to state n are lost with probability β_{n-c}
- For the markovian model this probability must depend only on the state
- Lets try a simple experiment:
 - Select the arrivals to the state n (n>c)

- Each one is lost with probability β_{n-c}
- Those are independent Bernouilli random variables
- The number of losses out of H consecutive arrivals must be Binomial distributed

$$P(\text{s losses in H consecutive arrivals}) = {H \choose s} \beta_{n-c}{}^{n} (1 - \beta_{n-c})^{H-s}$$

What is wrong in the model?

- Both differ significantly
- The discouraged arrival probability does not depend only on the number of bursts in the system (cause it also depends on the residual life)

Conclusions

- The balking model accuracy depends on the ratio between fiber delay and service time
- Larger FDLs provide smaller blocking probability but the model is less accurate
- As the number of wavelengths per port increase so does the inaccuracy in the model
- Higher number of wavelengths... smaller loss probabilities... but those are the interesting scenarios!
- Hence, the model becomes less accurate for the foreseen and more interested scenarios