On the Use of Balking for Estimation of the Blocking Probability for OBS Routers with FDL Lines

D. Morató and J. Aracil

Telematics Engineering group (http://www.tlm.unavarra.es)
Public University of Navarre, Pamplona (SPAIN)
daniel.morato@unavarra.es

What is this paper about?

- Blocking probability in OBS switches with FDLs ...
- Analytical models for calculating the blocking probability and dimensioning the switch ...
- The problems in analytical models for computing loss probability in OBS switches with FDLs

Contents

\square Short \& Fast introduction to OBS

- The problem and the scenario
- Models for the blocking probability
- Balking model: Analysis
- Conclusions

Introduction to OBS

- Halfway between OCS and OPS
- Payload entirely in the optical domain (no O/E/O conversion)
- Aggregation in the edge nodes creates bursts
- Switched path established with the information in the BCPs
- BCPs (Burst Control Packets) are sent before the payload
- BCPs are transmitted through a separated channel
- BCPs suffer O/E/O conversion

Introduction to OBS

Problem

- Output port contention
- High loss probability
- Optical memory is not available
- One solution: Fiber Delay Lines (FDLs)
- FDLs provide a delay equal to the propagation time (...)

Introduction to OBS

Problem

- Output port contention
- High loss probability
- Optical memory is not available
- One solution: Fiber Delay Lines (FDLs)
- FDLs provide a delay equal to the propagation time (...)
- How long should be the fiber?

The problem

- How long should be the fiber?
- Maximum delay (Length) needed for a target loss probability ?
- Traditional models?

- FDLs are not memory
- The burst cannot stay for longer than the fiber delay
- Fiber is available when the burst is completely transmitted
- Time the FDL is occupied \neq Time the burst is inside the FDL
- Time the FDL is occupied depends on the burst size

Scenario

- OBS Switch with variable-delay FDLs $\left(\mathrm{D}_{\max }\right)$
- Input traffic:
- $\mathrm{FGN} \Rightarrow$ Poisson arrivals $(\lambda)+$ gaussian burst sizes [IzalGCOM02]
- Use exponential sizes (μ) for comparison purposes ($I / \mu=15 \mathrm{~KB}$)
- Uniform output selection
- Single output port analysis
- "c" data wavelengths (IOGbps) per fiber
- Total wavelength conver. (\rightarrow multiserver)
- Popular hypothesis [LuTrans04]

[lzalGCOM02] M.Izal, J.Aracil. "On the influence of self similarity on Optical Burst Switching traffic". Proceedings of Globecom 2002
[LuTrans04] X.Lu, B.Mark. "Performance Modeling of Optical Burst Switching with Fiber Delay Lines". IEEE Transactions on Communications, Dec 2004

Simple queueing models

- M/M/c/c, Erlang-B
- No buffering
- Upper bound
- M/M/c/D [YooJSAC00]
- D=c+FDLs*c
- Virtual buffers
- No bound
- M/M/c/D [FanICC02]
$-D=c+F D L s * c^{*}\left(I-e^{\left(-D_{m a x} \mu\right)}\right)$

- Tries to include the time the burst occupies the FDL input
- Better approximation
- No bound
[YooJSAC00] M.Yoo, C.Qiao, S.Dixit. "QoS Performance of Optical Burst Switching in IP-Over-WDM Networks", IEEE Journal on Selected Areas in Communications, Oct 2000
[FanICC02] P.Fan, C.Feng, Y.Wang, N.Ge. "Investigation of the time-offset-based QoS support with Optical Burst Switching networks". Proceedings of ICC 2002

Queue with balking

- Continuous-time Markov chain
- State: Number of users in the system
- Balking:
- Form of impatience
- User decides whether to join the queue or not
- Expressed by a decreasing series $\left\{\beta_{\mathrm{k}}\right\}$ that mutiplies the arrival rate to each state
- β_{k} : Probability that an arrival is lost when the system has every channel occupied and k bursts waiting in FDLs

Queue with balking

- β_{k} : Probability that an arrival is lost when the system has every channel occupied and k bursts waiting in FDLs (discouraged arrival probability)
- Arrival is lost
- If there are no more virtual buffers available (assume large number)
- Or if delay before an output wavelength gets free is longer than the
maximum delay offered by the FDLs
- Time until a wavelength gets free: $T_{n}=\hat{R}+\sum_{i=1}^{n-c} \hat{U}$
\hat{R} : Time until first burst departs
\hat{U} : Time between departures

$$
P\left(T_{n}>x\right)=P\left(\sum_{i=0}^{n-c} \hat{R}>x\right)=e^{-c \mu x} \sum_{h=0}^{n-c} \frac{(c \mu x)^{h}}{h!}
$$

$$
\beta_{k}=P\left(T_{n}>D_{\max }\right)=e^{-c \mu L} \sum_{h=0}^{k} \frac{\left(c \mu D_{\max }\right)^{h}}{h!}, \quad k=n-c
$$

$$
P(\text { los } s)=\sum_{k=0}^{\infty} \pi_{k+c} \beta_{k}
$$

[LuTrans04]

Known results for this model

¿Results for c=8 wavelengths?

- More accurate than the simpler models
- Close in the range with exponential decay (...)
- For large FDLs it underestimates (...)
- It does not consider the limited number of buffers

Motivation

- In the literature, results only for I-IO wavelengths

■ However, nowadays: 8 wavelengths (CWDM) to 128 wavelengths (DWDM)
■ Our question: Is the model still accurate enough?

Blocking results (fixed c)

- Different number of wavelengths per fiber
- X-axis: normalized maximum delay ($\mathrm{D}_{\max } / \mathrm{E}[\mathrm{X}]$)
- For $D_{\max }=0$: Erlang- B
- As $D_{\max } / E[X]$ increases so does the discrepancy between model and simulation (... ...)

Blocking results (fixed c)

- Different number of wavelengths per fiber
- X-axis: normalized maximum delay ($\mathrm{D}_{\max } / \mathrm{E}[\mathrm{X}]$)
- For $D_{\max }=0$: Erlang-B
- As $D_{\max } / E[X]$ increases so does the discrepancy between model and simulation (... ...)
- Percentage of error in the estimation increases with $D_{\max } / E[X]$
- Worse the larger the number of wavelengths !

Blocking results (fixed $\mathrm{D}_{\max }$)

- Different values of maximum delay $D_{\max }$
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (... ...)

Blocking results (fixed $D_{\text {max }}$)

- Different values of maximum delay $D_{\max }$
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (... ...)
- Percentage of error in the estimation increases inverse to ρ (... ...)

Blocking results (fixed $\mathrm{D}_{\max }$)

- Different values of maximum delay $D_{\max }$
- X-axis: ρ
- As ρ decreases, the discrepancy between model and simulation increases (......)
- Percentage of error in the estimation increases inverse to ρ (... ...)

Queue with balking

- β_{k} : Probability that an arrival is lost when the system has every channel occupied and l hurete waiting in FD/c

System residual life T_{n} can be approximated by an Erlang distribution

delay offered by the FDL

- Time until a wavelength gets free:

$$
T=\hat{R}+\sum^{n-c} \hat{U}
$$

$$
P\left(T_{n}>x\right)=P\left(\sum_{i=0}^{n-c} \hat{R}>x\right)=e^{-c \mu x} \sum_{h=0}^{n-c} \frac{(c \mu x)^{h}}{h!}
$$

Erlang Distribution
$\beta_{k}=P\left(T_{n}>D_{\max }\right)=e^{-c \mu L} \sum_{h=0}^{k} \frac{\left(c \mu D_{\max }\right)^{h}}{h!}, \quad k=n-c$

$$
P(\text { loss })=\sum_{k=0}^{\infty} \pi_{k+c} \beta_{k}
$$

[LuTrans04]

System residual life

■ X-axis: Normalized residual life (...)

System residual life

- X-axis: Normalized residual life (...)
- Deviation as the system occupancy grows
- Specially when x gets close to $\mathrm{D}_{\max }(\ldots)$

Queue with balking

- β_{k} : Probability that an arrival is lost when the system has every channel occupied and l hurete waiting in FD/c

Discouraged arrival probability

computed from the Erlang distribution

delay offered by the FDLs

- Time until a wavelength gets free:

$$
T_{n}=\hat{R}+\sum_{i=1}^{n-c} \hat{U}
$$

$$
P\left(T_{n}>x\right)=P\left(\sum^{n-c} \hat{R}>x\right)=e^{-c \mu x} \sum_{h=0}^{n-c} \frac{(c \mu x)^{h}}{h!}
$$

Erlang Distribution

$$
\beta_{k}=P\left(T_{n}>D_{\max }\right)=e^{-c \mu L} \sum_{h=0}^{k} \frac{\left(c \mu D_{\max }\right)^{h}}{h!}, \quad k=n-c
$$

$$
P(\text { loss })=\sum_{k=0}^{\infty} \pi_{k+c} \beta_{k}
$$

Discouraged arrival probability $\left(\beta_{\mathrm{k}}\right)$

- Larger deviation as the system occupancy grows

Queue with balking

- β_{k} : Probability that an arrival is lost when the system has every channel occupied and l hurets waiting in FD/c
Discouraged arrival probability affects the calculation of the state probabilities
delay offered by the Fu's
- Time until a wavelength gets free:

$$
T_{n}=\hat{R}+\sum_{i=1}^{n-c} \hat{U}
$$

$$
P\left(T_{n}>x\right)=P\left(\sum_{i=0}^{n-c} \hat{R}>x\right)=e^{-c \mu x} \sum_{h=0}^{n-c} \frac{(c \mu x)^{h}}{h!}
$$

Erlang Distribution

$$
\beta_{k}=P\left(T_{n}>D_{\max }\right)=e^{-c \mu L} \sum_{h=0}^{k} \frac{\left(c \mu D_{\max }\right)^{h}}{h!}, \quad k=n-c
$$

State probabilities $\left(\pi_{n}\right)$

- Discrepancy happens in high occupancy states, hence those with low state probability
- But those are the states where losses take place

$$
P(\text { loss })=\sum_{k=0}^{\infty} \pi_{k+c} \beta_{k}
$$

What is wrong in the model?

- We assume that the arrivals to state n are lost with probability β_{n-c}
- For the markovian model this probability must depend only on the state
- Lets try a simple experiment:
- Select the arrivals to the state $n(n>c)$

- Each one is lost with probability β_{n-c}

- Those are independent Bernouilli random variables
- The number of losses out of H consecutive arrivals must be Binomial distributed

$$
P(\text { s losses in } \mathrm{H} \text { consecutive arrivals })=\binom{H}{s} \beta_{n-c}{ }^{n}\left(1-\beta_{n-c}\right)^{H-s}
$$

What is wrong in the model?

- Both differ significantly
- The discouraged arrival probability does not depend only on the number of bursts in the system (cause it also depends on the residual life)

Binomial

Conclusions

- The balking model accuracy depends on the ratio between fiber delay and service time
- Larger FDLs provide smaller blocking probability but the model is less accurate
- As the number of wavelengths per port increase so does the inaccuracy in the model
- Higher number of wavelengths... smaller loss probabilities... but those are the interesting scenarios!
- Hence, the model becomes less accurate for the foreseen and more interested scenarios

