
Effective Analysis of Secure Web Response Time
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Abstract—The measurement of response time in web based
applications is a common task for the evaluation of service
responsiveness and the detection of network or server problems.
Traffic analysis is the most common strategy for obtaining
response time measurements. However, when the traffic is en-
crypted, the analysis tools cannot provide these measurement
results. In this paper we propose a methodology for measuring
the response time in HTTPS traffic based on the flow of data in
each direction. We have validated the tool with real traffic and
with a worst case scenario created in a testbed. When pipelining
is present in the encrypted HTTP 1.1 traffic, it results in a small
error in the measurement (between 5% and 15% of error for
the 99.9 percentile of the real response time). However, pipelining
support has almost disappeared from modern web browsers; this
makes the estimation provided by this methodology very accurate
in real traffic measurements, even for low probability response
times. More than 98.8% of the over 8.6 million request-response
times we measured in our campus Internet link were obtained
without any error.

Index Terms—HTTP, HTTPS, traffic analysis, APM, response
time

I. INTRODUCTION

HyperText Transfer Protocol (HTTP) is a widely used
internet protocol, employed not only on the public World Wide
Web. It is the underlying mechanism for fundamental corpo-
rate management applications like ERPs (Enterprise Resource
Planning) or CRMs (Customer Relationship Management).
The new offerings of these services are web-based, and even
cloud-based. High responsiveness from these applications is
critical for an effective company workforce.

Application Performance Monitoring (APM) is an important
task in network and service management. It offers tools for the
detection of performance problems, such as server memory
limitations, high CPU utilization or network congestion. They
can be measured directly on the servers, on the network
switches or links or they can be indirectly obtained by mon-
itoring parameters such as application response times, which
offer a quantitative measure of the client’s perceived quality of
service. Isolated high response times do not signify an actual
problem; however, repetitive high latency values might be
indicative of a pathology concerning a server or an application.

Performance problems can be detected from server logs
[1]. Nonetheless, this information is incomplete, and it can
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be insufficient when dealing with an array of issues [2],
[3]. A more complete view of application behaviour can
be obtained by passively monitoring network traffic. This
allows the discovery of issues associated to the underlying
transport protocols, such as those related to reliable transport,
congestion control or flow control. Passive traffic monitoring
is common in business environments using port mirroring
techniques [4], [5].

Nowadays, with increasing HTTPS adoption [6], HTTP re-
quests and responses are concealed, which poses a problem to
application performance monitoring - request-response times
are no longer measurable. Some APM tools offer traffic de-
cryption [7], [8], [9], [10]. However, decryption (which already
introduces an additional layer of processing when analyzing
traffic) requires access to the server’s private key, which may
not be possible in all scenarios. For example, monitoring
office workers’ traffic towards external web applications (such
as cloud based ERPs) is not possible using this technique.
Moreover, with the arrival of version 1.3 of Transport Layer
Security (TLS), perfect forward secrecy becomes mandatory
[11], which means that decryption is not possible even in
possession of the server’s private key, due to the ephemeral
keys generated for each connection.

In this paper, we evaluate a technique for HTTPS re-
sponse time analysis, without traffic decryption, which allows
anomaly detection. We present the results obtained from
employing this method on a large dataset, as well as the
possible issues that arise when analyzing HTTP. The results
show high accuracy in obtaining an estimation of the frequency
of high response times for corporate access link traffic.

The rest of the paper is organized as follows. Section II
describes the measurement algorithm and the characteristics
from HTTP and TLS it depends on. Section III presents
the scenarios where network traffic was collected in order
to evaluate the accuracy in the measurement. Section IV
contains the results comparing the estimation to the ground
truth measurement and section V concludes the paper.

II. HTTPS ANALYSIS

HTTP is an application level protocol which has received
considerable attention from the research community since the
late 90s [12]. Its secure counterpart, HTTPS, has been com-
monly deployed since privacy in personal data or economic
transactions became frequent in the Web [13].

Response time analysis for HTTP or HTTPS requests can
be easily accomplished from server access logs [1], [3], [14].



However, server logs hide client perceived response times.
Client side results can be obtained based on active response
time measurements [15], however they are not extensible to
a large population of users. When server logs are not easily
accessible or they do not provide all the necessary information,
service analysis is accomplished based on passively-monitored
network traffic. The research literature on HTTP traffic anal-
ysis is abundant [2], [14], [16], [17], [18]; however, HTTPS
limits its effectiveness due to payload encryption.

HTTPS response time analysis from network traffic can be
based on TLS session data decryption [9], [10], [19]. However,
in most networking scenarios, decryption is not possible, and
a blind traffic analysis is the only option. There are only a
few previous works on blind HTTPS performance analysis.
Most papers restrict their scope to macroscopic measurements
or to some kind of user, browser, operating system or web
site fingerprinting [20], [21], [22]. In [23] the authors present
a tool which is able to measure response times for HTTPS
traffic based on the analysis of the distribution of packet sizes
and arrival times. However it requires a variable threshold
parameter to distinguish container object requests (such as
the main HTML document of a web page) and its embedded
objects. It also needs to record every client’s round-trip time
(RTT) and it is not perfectly robust to parallel download,
resulting in accuracy loss. With pipelining present, they work
on the assumption that non-pipelined requests will be within
a size range, which might not be true for every environment
in which HTTP is used. Overall, size-based analysis does not
seem to be flexible enough to work in settings where the nature
of requests and responses might be different than those of the
test context.

A. HTTPS fundamental mechanics

The TLS [11] protocol has an initial handshake phase, where
certificates are possibly exchanged, a common encryption suite
is negotiated, and encryption keys are generated. This stage
is performed in clear text, and it can be analyzed by any
packet inspection tool. The encryption keys cannot be obtained
from the traffic but these steps in session establishment can be
easily monitored. From there on, both parties send encrypted
Application Data messages to one another. These HTTPS
messages contain the original HTTP header and payload.
APM tools try to measure the response times to these HTTP
requests. The requested URL cannot be decrypted but an
anonymous response time could be extracted from network
traffic.

A client performs a single initial HTTPS handshake in a
TCP transport connection, which establishes the encryption
session (see Fig. 1). HTTP 1.1, transported over TLS, offers
persistent connections, i.e. a single connection can be used
for multiple HTTP requests. The TLS handshake is not part
of the HTTP request, and many requests can take place after
a single session establishment. These negotiated parameters
can even be shared with other TCP connections established
in the following minutes between the same peers. This initial
handshake time affects the response time experienced by the

user. However, it can be measured independently, and be taken
into account if it indicates an issue. In this paper, we focus
on measuring request-response times for encrypted data, since
analyzing the plaintext handshake phase is a trivial task.

B. Analysis methodology

HTTP analysis can be accomplished based on per-packet,
mostly stateless, techniques [24] or it can require the recon-
struction of both TCP streams in the connection. The analysis
techniques without reconstruction are faster but they are also
error prone in the presence of packet losses. TCP stream
reassembly is a very common task in APM traffic analysis
tools and stateful firewalls [25]. It is necessary before TLS
decryption can be applied. We relax the requirement of stream
decryption in the analysis process but we do keep the contin-
uous application data streams as an input to the algorithm.
Therefore, losses, disordered packets, and retransmissions do
not pose a handicap for the analysis. Previous papers have
shown that TCP stream reconstruction is feasible for traffic
rates of several gigabits per second using multi-core processing
architectures [25], [26].

Reconstructed stream data can be available for analysis as
soon as the TCP sequence is continuous. We are not assuming
stream reconstruction after a connection finishes but a live
reconstruction. The analysis module sees new data available
as an application using a TCP socket would see it. As soon
as the TCP stack in the host (or in the reconstruction module)
has new in-sequence bytes available they are offered to the
application (or to the analysis tool). We have implemented
and tested a TCP stream reconstruction module for passive
traffic analysis.

From the reconstructed TCP streams we can extract TLS
Application Data messages. These messages contain the HTTP
Protocol Data Units (PDUs). Several Application Data mes-
sages can be required in order to send a large HTTP request or
response. A simple HTTP GET request is usually contained in
a single Application Data message, however, an HTTP POST
message request, uploading a large file, could require several
messages. The responses to these messages also require one or
more TLS Application Data messages depending on content
length. These messages will be contained in one or more TCP
segments and therefore IP packets.

Our proposed method looks at Application Data message
bursts in each direction1. It assumes a burst is equivalent to an
HTTP request or response, depending on its direction (client
to server or vice versa). A request ends when the first byte
from an Application Data message from server to client is
available. The response ends when the connection is closed or
when the first byte of an Application Data message from client
to server is available. The beginning of a response marks the
end of the request and the beginning of a request marks the
end of the response to the previous one.

Fig. 1 shows an example of an HTTPS session. After the
TCP connection establishment and TLS session management,

1The source code for this algorithm is available on request



a bidirectional full-duplex encrypted stream is available. A
request can be contained in several Application Data messages,
which in turn can be contained in several TCP segments. TCP
segmentation is hidden to the APM tool by the TCP stream
reconstruction function. All the Application Data messages
from client to server are assigned to a single request, which
ends when new data from server to client is measured (the
response). The end of the response is marked by new data
from client to server.
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Fig. 1. Timeline of events in an HTTPS session

C. Pipelining and HTTPS analysis

The proposed analysis methodology requires that only one
standing request exists per connection. This is the behaviour
present in HTTP 1.0, however, HTTP 1.1 explicitly allows
pipelining. This means that several HTTP requests can be sent
from client to server, previous to the response to any of them.
The protocol only requires that responses keep the same order
as the requests. This ordering results in Head-of-Line (HoL)
blocking in the HTTP 1.1 stream.

Pipelining breaks the request-response sequence, therefore
it can cause problems in the analysis. The HTTP pipelining
mechanism could lead the analysis tool to consider several
requests as a single one. A burst of several requests in a
row cannot be distinguished from a single request due to
encryption. Also, the responses to pipelined requests will be
considered a single response. This means that employing the
proposed method in the presence of pipelining could yield
higher response times overall, and that it will report a lower
number of requests, due to the grouping. Fig. 2 shows an
example where the second HTTP request is sent before the
response to the first request arrives. The APM tool will
consider both TLS messages as part of a single request and
the responses as part of a single response.

If the pipelined requests are sent back-to-back (without
waiting for any response), the response time given by the
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Fig. 2. Pipelining in HTTP 1.1

analysis tool should be a good approximation of the highest
response time in the pipelined burst. The highest response time
is expected to take place for the last request in the pipelined
burst, due to HoL blocking (its response time will be increased
by all the previous responses in the pipeline).

In the following sections we show the results obtained from
measuring response times using the proposed methodology
and we compare them to the real response times that could
be measured by decrypting the streams.

III. MEASUREMENT AND ANALYSIS SCENARIOS

We ran the proposed APM tool for several traffic traces. We
used a large traffic trace from our university campus Internet
link, and several traffic traces obtained from a testbed scenario.
We created the testbed in order to control the amount of
pipelining present in the traffic. These traces provide a scenario
where the effect of pipelining on accuracy can be measured.

For evaluation purposes, HTTP traffic was used instead of
its encrypted counterpart. Although the main purpose of this
paper is proposing a method to analyze encrypted web traffic,
verification of its accuracy using HTTPS traffic requires the
decryption of the TLS streams, which is not always possible.
We adapted the algorithm to analyse HTTP traffic. Instead of
waiting for Application Data messages, it takes any TCP data
from client to server as part of a request and any traffic from
server to client as part of a response. The end of a request is
marked by data from the server (the beginning of the response)
and the end of the response is marked by the end of the
connection or by new application level traffic from client to
server (the beginning of a new request). Being HTTP traffic,
we can use an HTTP traffic analysis tool in order to provide the
ground truth response time measurement. We developed this
tool, based on the same TCP stream reconstruction module
used by the HTTPS APM tool.



A. Testbed scenario

As previously explained, traffic was captured from a testbed
scenario to control and see the effect of pipelining on the
proposed traffic analysis method. To do so, software scripts
were developed to recreate clients connecting to a server with
a controllable pipelining parameter. This parameter establishes
the largest pipelining burst possible in a connection. For each
new burst, a random number is drawn from a discrete uniform
distribution between 2 and the largest desired number of
requests in the burst. These requests are sent back-to-back
from client to server and the client waits for the responses
before initiating a new random burst.

For each request, following previous measurements on web
traffic [12], a random response time was determined from a
pareto distribution with α = 1.21 and decay after x ≈ 0.3
seconds2.

The testbed machine uses Apache 2.4.34 with the prefork
Multi-Processing Module (MPM) [27] as the HTTP server.
The client scripts create several concurrent TCP connections
to the server, each one representing a user or one of the parallel
connections between browser and server.

We want to control the amount of pipelining in order to
measure its effect on the accuracy of response time measure-
ments. We do not need to model parameters such as client
reading time, connection duration or response size, since they
have no effect on response times to individual requests.

Each experiment generated 2,000,000 HTTP requests. Table
I shows the number of bursts in each experiment, which is
approximately the total number of requests divided by the
average burst length. Using HTTP analysis, all the 2 million
response times were measured while the blind traffic analysis
provides only one measurement per pipelining burst.

TABLE I
PARAMETERS IN PIPELINING BURST GENERATION (NUMBER OF HTTP

REQUESTS PER BURST) AND NUMBER OF BURSTS IN THE TESTBED
EXPERIMENTS

Maximum Average Number of
burst size burst size pipelining bursts

2 2 1044808
3 2.5 832866
5 3 518387

10 6 314851
15 8.5 239172
20 11 177532
20 11 177532
25 13.5 150270
30 16 127078

B. Real world scenario

We verified the analysis method using also a large web
traffic trace from our university campus Internet access link.
The trace was collected during more than 4 days (from January
24th 2019 15:26 to January 29th 2019 13:26). It contains 5.3
million TCP connections with HTTP traffic from more than

2These traffic traces are available on request

78,000 users. These users include local campus users accessing
public web servers and remote users accessing campus servers.
The number of different users is obtained by the number of
different client IP addresses. The average number of requests
per connection was 1.6, with a total 8.6 million HTTP request-
response pairs. HTTPS traffic represents a larger percentage of
link usage. We can run the APM tool using the HTTPS traffic,
however we cannot validate the response times it provides,
therefore we proceeded to the validation using HTTP traffic.

IV. TOOL VALIDATION RESULTS

A. Testbed scenario

We measure response times from the beginning of a request
to the end of the response. Using HTTP dissection we decode
HTTP headers and obtain the ground truth measurement.
Using the developed APM tool we obtain estimated response
time values. We cannot compare the values on a one-on-
one basis, as the APM tool provides fewer results than the
real number of HTTP requests. However, we are interested
in detecting repetitive performance issues, which even in a
sampled measurement can be detected from the probability of
extreme response time values.

Fig. 3 shows the survival function for the cumulative
probability distribution of response time, obtained using HTTP
dissection or using the APM tool. It presents the results for
several degrees of pipelining, described by the average pipelin-
ing burst length. In a burst, each subsequent request to the first
one presents a response time which includes the response time
from the previous requests (see Fig. 2). Therefore, the higher
the average burst length the heavier the distribution tail is.
The results offered by the APM tool follow the distribution
shape from the ground truth, however, it offers a worst case
estimation (larger probability values P (Tresp > t)). The
reason is that it takes only one measurement from each burst,
which corresponds approximately to the response time for the
last request in the burst.

The results offered by the APM tool are closer to the
real response time values when the average burst length is
small. We checked the quality in the estimation for percentiles
99 and 99.5. Fig. 4 shows the percentage of error in the
estimation. For an average burst length larger than 3 requests
the estimation is within at least 80% of the desired value
(less than 20% error). For lower burst lengths it improves to
85%, but more important, it does not get worse as the average
pipelining burst size increases, even when using runs of 30
requests or more. For the 99.9 percentile the quality of the
estimation is even better, and less than 10% error is obtained
for bursts shorter than 8 requests.

We must highlight that this error in the estimation is due
to the presence of pipelining. It would not exist in case of no
pipelining. We are evaluating how the quality of the estimation
depends on the degree of pipelining assumming pipelining is
present. We show on the following section that pipelining is
not so common nowadays.

As previously discussed, in presence of pipelining, we
expect the response time value measured by the HTTPS APM
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tool to be very similar to the worst response time in each
pipelined burst - typically the last request in it, due to HoL
blocking. To test this, the largest response time for each
burst was extracted. Fig. 5 shows the survival function for
the cumulative probability distribution of the largest response
time per burst (HTTP dissection), compared to the results from
the APM tool. Both are nearly identical, which validates the
hypothesis.
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B. Real world traffic analysis results

The testbed has revealed that the quality of the response
time estimation depends heavily on the presence and degree
of pipelining in the traffic. The real HTTP traffic trace we
described in section III-B contains 5.3 million connections,
however, less than 3,000 of them present pipelining, i.e. less
than 0.06% of the connections. More than 8 million request-
response pairs take place in connections without pipelining,
therefore for more than 99.11% of the requests there should
be no error in the estimation. Those 3,000 connections present
an average burst length of 6.73 requests and a maximum of
10 requests in the pipeline.

Fig. 6 shows the survival function for the cumulative
probability distribution of response time, obtained using HTTP
dissection or using the APM tool with the real traffic trace.
Visually, the results match with high precision for probabilities
above 10−4.

In fact, automated analysis of each individual connection
shows that 98.855% of the over 8.6 million request-response
times match perfectly between the results from both the HTTP
and HTTPS APM tools.

Worse results were expected, but they were conditioned to
the presence of pipelining. However, for some time now, the
mechanism of pipelining has been abandoned in web browsers
due to bugs, poor retrocompatibility with older servers, incon-
sistent behaviour with proxies and HoL blocking [28]. While
pipelining presented a solution to high latency environments,
where sending several requests would save round trips, the
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main browsers have discarded its use (or disabled it by
default) in favor of solving this issue with the coming of
HTTP/2.0 [29], [30]. The main User-Agents we found sending
pipelined requests were APT (a software package manager for
GNU/Linux), Android browsers with User-Agent Dalvik, and
Apple iPads.

However, we acknowledge that pipelining might be present
in specific environments dominated by proprietary software
that uses different HTTP libraries. Some common libraries
that support pipelining are Net::Async::HTTP [31] for Perl,
Twisted [32] for Python, Apache HttpCore [33], Microsoft
.NET Framework [34], and QNetworkRequest [35] and libcurl
[36] for C++.

C. Protocol features which affect the analysis

During the implementation and debugging of an HTTP
dissector for obtaining ground truth measurements we detected
several other protocol features which could deviate the results
obtained using the APM tool:

• Error response codes: Some HTTP error response codes
are sometimes sent from the server before the whole
request is received. This is the case for errors 400 (Bad
Request), 413 (Request Entity Too Large), 414 (Request-
URI Too Long) or 500 (Internal Server Error). A large
request, requiring several TCP segments, can result in the
server sending an error response before the whole request
has been sent. The APM tool cannot see the error code
as it is encrypted (blind analysis), therefore the response
breaks the request packet flow and the last segments of
the request are taken as a new request.

• 100 Continue: When a client has a large request body to
send, it has the option to send first an HTTP header with
the Expect: Continue option. The server may respond
with an HTTP 100 Continue code to signify that the
following request body will be accepted, based on the
received header. This allows the client to check whether

its request will be accepted before sending the actual
request, thus saving bandwidth if such request would be
denied. As the response code is encrypted, it cannot be
recognised and the request-response sequence is broken
into two.

• Keep-Alives: Some TCP implementations send TCP
Keep-Alive segments to prevent the connection from
being closed after an idle period. They send one garbage
byte at the end of the TCP stream sequence. Although
this byte should be considered a retransmission, it elects
an HTTP 1.1 400 Bad Request response in some servers.

• WebSockets: Using the WebSocket protocol an HTTP
session becomes a two-way communication channel
where each end-point can send data independently. Web-
Sockets break the request-response behaviour, therefore
the measured response times using the described APM
tool would be wrong. In our 5.3 Million HTTP connec-
tions only 766 of them offered the option to upgrade
to the WebSocket protocol. This is less than 0.02%
of the connections, hence we do not expect a large
deviation in the response time distribution due to errors
in measurement for this protocol.

Although the analysis was accomplished using HTTP traffic,
all the features described above are expected to be present
in HTTPS traffic. There are no HTTPS-specific mechanisms
that could result in an erroneous measurement. All the above
described situations are due to HTTP protocol features.

D. Other advantages over HTTP dissection

We implemented the dissector while expecting HTTP traffic
to be RFC-compliant. However, we found several situations
where the dissector required heuristics in order to decode some
server responses. Some of these situations come from HTTP
servers being non-conformant to HTTP 1.1 RFC [37], while
some others have their origin in bad programming techniques
at the server side. We detail the most significant situations we
found:

• HEAD attached to a body: HTTP HEAD requests result
in a response which must not [37] contain a body, even
if the response specifies a Content-length. The length
specified is for the body that would be sent in case for
example of a GET request. We have found some servers
that send the body of the response even for a HEAD
request. An RFC-conformant client will not expect any
body in the response, therefore it will not read from the
TCP stream after the HTTP header was complete (based
on a blank line). The body of the response stays in the
input TCP stream and it will be read by the client when it
expects the answer to another request, causing confusion
to the HTTP decoder.

• Excessive body: We have found some situations where the
HTTP response contains the Content-length field with a
number of bytes specified for the body which do not agree
with the real number of bytes sent after the HTTP header.
Usually, the body is larger than the size specified in the
header field. The reason is a server script which forces the



value in the Content-length field but afterwards it sends
more bytes than it announced. It can be for example a
PHP script that sends a file to the client but some error
in the script creates a text error message, which is sent
through the output stream to the HTTP response, adding
more bytes to the response, which were not accounted
for in the header. In other situations the server-side script
sends a footer, maybe because the developer didn’t notice
that the footer was included in all the scripts and this
footer adds more bytes to the body than the Content-
length size that was announced.

• Malformed headers: HTTP 1.1 RFC specifies that header
lines end with a pair or characters CRLF (Carriage-Return
Line-Feed), however, there are server implementations
which use only the line-feed character. The RFC also
provides the names for the header options, but we found
servers that use illegal option names, meaning that instead
of a Connection option they wrote “Coennction” or
maybe “nnCoection”, which makes recognising a header
option a difficult task. The source of these error are prob-
ably simple servers, used in embedded systems. These
servers can become quite common with the increase in
IP-based Internet of Things (IoT) devices.

In these situations, an RFC-compliant analysis will result in
errors due to illegal HTTP responses. However, the APM tool
we have described does not carry any deep header analysis,
therefore it cannot fail in these situations and it provides the
correct measurement without any additional heuristic.

A blind analysis can provide results where a deep analysis
would fail without adding some heuristics.

E. Applicability to HTTP/2 traffic

The algorithm presented in this paper can also be applied
to HTTP/2 traffic over TCP or over Quick UDP Internet
Connections (QUIC).

In HTTP/2, due to the protocol’s inherent stream multiplex-
ing [38], packet bursts can no longer be assumed to contain
a single request or response. TCP packets can contain frames
from several HTTP messages, which in an encrypted stream
are indistinguishable. In fact, using HTTP/2, servers can even
push resources to the clients before a request has been issued.
We expect a decreased accuracy of blind analysis due to these
features.

As for HTTP/2 over QUIC, which has been proposed as
HTTP/3 [39], the differences introduced by QUIC in the traf-
fic’s characteristics remain to be tested, yet they are expected
to have a lesser impact compared to those from HTTP/2.

These two scenarios have been left for future work.

V. CONCLUSIONS

In this paper we have proposed the analysis of response
time for encrypted HTTPS requests based on the data flow
between endpoints. The procedure overestimates the correct
value when HTTP pipelining is present, however, support of
pipelining has been eliminated from most major browsers,
making its presence insignificant in the traffic we collected

from our university campus access link (more than 5 million
connections). When considering the whole set of requests in
a network link, the proposed methodology provides a good
approximation of the distribution of response times, even for
probabilities as low as 10−4. It also simplifies the analysis
when the server does not follow the requirements in HTTP
protocol syntax.
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