
A Simple Passive Method to Estimate RTT in High Bandwidth-Delay Networks

Iria Prieto,

Mikel Izal,

Eduardo Magaña

and Daniel Morato

Public University of Navarre

Navarre, Spain

Email: iria.prieto, mikel.izal, eduardo.magana, daniel.morato @unavarra.com

Abstract—This paper presents a simple passive algorithm to
estimate the Round-Trip-Time (RTT) of a TCP connection in high
bandwidth-delay network scenarios. In these scenarios, a passive
RTT estimator that can be used on captured packet traces is a
useful tool for performance analysis. The algorithm is based on
observing periodic RTT patterns in a TCP connection that is not
filling its bandwidth×delay product. The results are compared to
other passive methods such as the RTT of initial TCP handshake
or TCP Timestamp option samples. The algorithm is shown to be
effective and may be used in more scenarios than other methods
thus, it provides a valuable tool to improve the amount of TCP
connection whose RTT can be measured in a captured packet
trace.

Keywords–RTT; passive; network; traffic.

I. INTRODUCTION

Round-Trip-Time (RTT) is a key network performance
metric. It is easy to measure using active probes (i.e., with
Internet Control Message Protocol, ICMP) but it is not so
simple to estimate by passive observation of traffic. There are
situations where a passive RTT estimation from a captured
packet trace is needed in the field of network and system
analysis and network health check.

The RTT indicates the time that is taken to obtain a
response from the other side of the communication, namely,
the network latency. The latency can be used to identify short-
life network problems. For instance, a RTT instantaneous
peak may indicate a short period of congestion or suggest
the existence of a network problem. Furthermore, the RTT
of different network segments can be used to analyze if a
performance issue is due to different parts of the network
or even suggest it may be an application or server issue.
RTT is a major factor in TCP, Transmission Control Protocol,
connection and data transfer performance.

RTT is calculated as the elapsed time between one packet
sent by one endpoint and the reception of a packet from the
other endpoint that acknowledges the first packet. Any packet
that can be guaranteed to have been sent by the other endpoint
only after reception of the first packet may be used. There
are several factors that can affect the measured time, like
retransmissions or packet losses. Also, the other side may delay
the response for protocol reasons (like TCP delayed ACK) or
just because the response is not mandatory and the data flow
in the other direction is being used as response. The later case
can be defined as limited by the application.

All these factors make the passive estimating of RTT a non
trivial task as it was exposed by Zhang [1]. It requires to take
into account several conditions: disorders, retransmissions, lost
packets, where the capture is located, etc.

Some RTT passive estimation methods have been proposed
in the literature. The work of Strowes [2] is based on the
observation of packets using TCP header timestamp option
which is used by TCP protocol to generate RTT measures.
For this samples to be present in a TCP connection the
option TCP Timestamp option has to be activated, [3]. A TCP
connection uses TCP options if both endpoints agree to use it
at connection establishment negotiation. Another work which
used Timestamp for RTT estimation is [4]. Both works show
that the estimation solved some passive approach problems
such as packet loss or capture point dependence. They also
showed that Timestamp estimation is as good as the use of
active ICMP probes. The main problem of TCP timestamp
method is that there is still a very large fraction of TCP
connections that do not use Timestamp option. As an example,
our measurements at an university access link show only 22%
of observed TCP connections successfully negotiated the use
of TCP timestamp option. The test was performed on a trace
of 1000 TCP connections captured during one work-day on
Nov 2014.

Other passive methods work regardless of TCP timestamp
option being used. For instance, the authors in [5] estimated the
RTT value through the three-way handshake and the slow-start
phase. The RTT provided by the three-way-handshake is not
always accurate because it may be changed by middleboxes
between client and server. These middleboxes may answer or
initiate the connection on their own, resulting in lower RTTs.
Besides, extracting parameters from time measures of TCP
slow start phase is not an easy task. Other techniques relay
on more complex mechanics. The authors in [6] associate a
data segment with the ACK segment that triggered it. Other
approaches try to measure RTT by mimicking changes in the
sender’s congestion window size [7]. It should be taken into
account that these estimations are affected by packet losses, the
TCP window scaling option and buggy TCP implementations.

The motivation for this work comes from the field of
performance analysis of networks by means of captured packet
traces. This is a valuable tool for troubleshooting and problem
detection of large enterprise networks where packet traffic is
captured at a vantage point to study network problems. This
analysis is usually done by capturing traffic in advance and

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

analyzing it a-posteriori in case some problem was reported.
Thus, it is unfeasible to perform active measures of RTT.
The large amount of traffic usually captured would make
very difficult deciding, which endpoints to measure RTT in
between. That is the reason why a passive RTT estimation tool
is searched that can provide RTT values between the endpoints
of every observed TCP connection. The scenarios of interest
are high speed networks with middle to high traffic loads like
those of datacenter or large enterprises.

The paper is organized as follows. First of all, the algo-
rithm and configuration parameters are introduced. Section III
describes the network scenario used to check the proposed al-
gorithm. Section IV and V present the results and conclusions.

II. PROPOSED ALGORITHMS

The proposed algorithm provides an estimation of RTT by
observing the behavior of TCP connections that are not filling
its bandwidth× delay product. Note that a TCP connection
data flow is limited by the flow control window which is
advertised from each endpoint to the other.

Assuming an application, which always has data to send
over TCP, if the RTT is high enough, TCP will be able to
send the full permitted window of data and stop sending till
it receives the confirmation for the first packet in the window.
In that case data will be sent like and ON-OFF source with
RTT period. If RTT is not so high, acknowledged packets will
start arriving before the end of the window, resulting in more
or less continuous data flow. The proposed RTT measuring
method examines the TCP connection and infers the RTT from
the observed ON-OFF pattern.

The idea is to provide an RTT estimation method for TCP
connections requiring only passive capture of traffic. Even it
may work just on some TCP connections depending on their
advertised window and bandwidht × delay product, there are
common scenarios where TCP window is small enough.

The algorithm evaluates if a given candidate RTT value
could be the actual RTT seen by the TCP connection or it
is an impossible value. The candidate is tested by using it
as the time length interval to divide the connection time into
slots and perform a simple check. If in any of the time slots
more bytes have been sent by one endpoint than the advertised
window, then the candidate is discarded. In fact, if a candidate
is discarded it is clear that the actual RTT is lower than
the candidate. If the candidate value passes the check it is
an acceptable value for RTT. The algorithm searches for the
smallest possible candidate value that can not be discarded as
a valid RTT.

Defining the parameters,

• c: the total time that a connection lasts.

• t: the candidate time to be tested as possible value for
the RTT.

• n: the number of t duration intervals on the connection
n = ⌈ c

t
⌉

• i: an interval being evaluated, i ∈ 0..n.

• Bi: Total bytes sent by the server in an interval, i.

• wi: Maximum advertised window seen at interval i

• wmax
i : Maximum advertised windows seen up till in-

terval i, wmax
i = max{wk} ∀k ∈ 0..i

The proposed algorithm consists in searching the smallest
possible candidate t that does not fail the test. Several versions
of the algorithm have been studied with different degrees of
requirements. Depending on the test conditions different RTT
estimators are generated named as RTT1, RTT2, RTT3.

1) RTT1: Candidate t is valid if in every interval, i, the
total bytes sent is lower than the maximum window
seen for each interval, equation 1

2) RTT2: Candidate t is valid if in every interval, i, the
total bytes sent is lower than the maximum window
seen for the whole TCP connection (discarding ad-
vertised window from TCP 3 way handshake packets
SYN,SYN+ACK,ACK), equation 2

3) RTT3: Candidate t is valid if in every interval, i, the
total bytes sent is lower than the maximum window
seen up till that time in the TCP connection, equation
3

RTT 1 = t ∀i ∈ 0..n Bi < wi (1)

RTT 2 = t ∀i ∈ 0..n Bi < wmax
n (2)

RTT 3 = t ∀i ∈ 0..n Bi < wmax
i (3)

In this work, the search for the smallest valid t is performed
by initially choosing a candidate t that is clearly larger than
the RTT and reducing t in a fixed amount δt every time the
test is passed. When a value t − δt fails the test, the previous
t is declared the RTT estimation. The δt value used imposes
the resolution of the estimator.

The algorithm is considered to finish when the candidate
time fails the test. The value that will be shown as the final
result is the previous one. The result of the algorithm is an
upper limit from the theoretical RTT. In case that the first
candidate time will not fail the test in the first iteration, it will
not give any information since the real RTT could be higher
than the tested one. In these cases, another candidate time
could be chosen multiplying the first one by some value and
the test would be restarted.

III. VALIDATION SCENARIO

The algorithm has been validated in the scenario of Figure
1. An emulated network of virtual machines is built with
several client boxes in an emulated 10Mbps Ethernet. This
virtual LAN, Local Area Network, is connected to a second
virtual LAN through a routing virtual machine. In the second
LAN there is a machine running a web server.

In the routing machine, the delay of packet forwarding is
controlled using Netem tool [8]. The line speed of both virtual
networks is 10Mbps.

The scenario is built with VirtualBox running on an Ubuntu
14.04 Linux PC. Client and router boxes are virtual boxes
running Ubuntu 12.04. The host machine running the virtual-
ization software acts also as the web server machine, Figure
1.

The scenario is configured for different RTTs by selecting
the routing box forwarding delay, half RTT for each direction.
The scenarios are configured for using total forwarding of

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

Figure 1. Emulated scenario of a network whose connections are limited by
w/RTT.

40, 80, 120, 200 and 400 ms in the experiments. In order to
emulate the behavior of middleboxes, which usually are used
in high-performance networks, TCP handshake packets (first
3 packets with SYN, SYN+ACK and ACK flags) will have
a lower forwarding delay, exactly a 10% less than the value
used for the rest of the connection.

In order to have a scenario of TCP not filling the path
bandwidth× delay, TCP window scale option is deactivated.

The experiments consist on clients making HTTP, Hy-
pertext Transfer Protocol, requests to the Web server. The
server will send a variable size page whose size follows a
uniform distribution between 1 and 3 MBytes. Clients will
make requests with inter arrival times following a uniform
distribution with mean 8 seconds. These characteristics will
provoke that the channel of the server will have an average
load about 6 Mbps.

IV. RESULTS

The RTT of a path used by a TCP connection can be
defined as the time it takes for a packet to travel from one
endpoint to the other plus the time it takes the confirmation
packet to return back to the original endpoint. That is a
property of the path which could be calculated by just adding
the link delays of the path. But an actual TCP connection is
affected by the actual RTT of every packet it sends which is
not always the pure RTT of the path because of variations due
to waiting at queues along the path or response waiting times
at the remote endpoint. Thus, the RTT can be seen as a random
process. The estimation algorithms are trying to measure this
random variable.

In the presented secenario, different RTT estimators have
been evaluated, namely the three proposed RTT1, RTT2, RTT3
estimators provide a value for the RTT seen by a given
TCP connection. They have been compared to two classical
estimators of RTT for TCP connections: initial RTT estimator
and TCP timestamp option estimator. Initial RTT estimator
measures the RTT for the connection as the time from first
SYN packet of the conception to the confirmation packet of
the SYN+ACK packet. This is the time duration of TCP 3way
handshake. The TCP timestamp estimator measures RTT of the
connection by observing TCP timestamp options that provide
accurate instant RTT samples. These samples are always

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

P(
X

>
x)

RTT (Seconds)

Zero load RTT 40 ms
Zero load RTT 80 ms

Zero load RTT 120 ms
Zero load RTT 200 ms
Zero load RTT 400 ms

Figure 2. RTT estimation using the “Timestamp” method

greater than the actual RTT. The TCP timestamp estimator
chooses the smallest sample value observed as the RTT for that
connection path. The TCP timestamp option estimator will be
a very good estimator by definition but its use depends on the
captured connections using it.

Apart from that, as every TCP connection in the validation
scenario has the same path, the full set of TCP timestamp
measure samples could be used as a ground truth of the
RTT random process. Figure 2 shows the probability density
function of RTT for the different configurations.

To compare the estimators, 2000 connections were captured
running the explained scenario. The five estimators RTT1,
RTT2, RTT3, initial and TCP timestamp, were computed for
every TCP connection seen.

The results, the mean, minimum, maximum and variance
values, for all the estimators analyzed are shown in Table I. The
probability density functions are shown in Figure 3. The results
show that all estimators slightly overestimate the actual RTT
and that the TCP timestamp is the most precise as expected.
The overestimation is larger when the actual RTT to estimate
has low values.

Analyzing the results obtained for the rest of the RTT
estimators versus the initial RTT, obtained from the handshake,
and the amount of time of the Timestamp, it is shown as the
majority of the connections had results around the expected
RTT, Figure 3. From the three algorithms, RTT1 is the one
which overestimate less since it is the less strict.

Since the scenario emulates a network using middleboxes,
the initial delay time which was obtained from the 3way
handshake should be slightly lower than the delay for the
rest of the connection, (10% lower). However, as the server
experienced a moderate load the actual initial RTT was usually
on the order of the RTT for the rest of the packets. This effect
can be observed at the minimum value obtained for the initial
RTT for each experiment, as shown in Table I.

Some connections had high values for all the methods
except for the Timestamp estimation. During the connection,
sometimes the actual packet RTT was the configured scenario
value. In a long connection, at least some window flights
experienced an RTT larger than the base one, due to the

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.12 0.14 0.16 0.18 0.2

P(
X

>
x)

RTT (Seconds)

Zero load RTT 120ms

RTT1
RTT2
RTT3

Init RTT
Timest RTT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

P(
X

>
x)

RTT (Seconds)

Zero load RTT 200ms

RTT1
RTT2
RTT3

Init RTT
Timest RTT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.35 0.4 0.45 0.5

P(
X

>
x)

RTT (Seconds)

Zero load RTT 400ms

RTT1
RTT2
RTT3

Init RTT
Timest RTT

Figure 3. Comparing the RTT estimation using all methods

server being busy with traffic for others requests. The proposed
algorithms adapt to the maximum time for the connection and
so the values were higher than expected. Figure 4 shows an
example for a connection whose RTT values were higher than
expected. This connection should have a 400ms estimation for
the RTT, according to the theoretical value, however the result
of the algorithm for that connection was 700ms. The values
obtained were similar to the maximum value for the Timestamp
estimation observed for the same connection.

TABLE I. STATISTICS FOR THE CALCULATED RTT

Zero load RTT Method Min (s) Max (s) Mean (s) Variance (s2)

40ms

rtt1 0.054 0.396 0.087 0.003

rtt2 0.054 0.396 0.087 0.003

rtt3 0.054 0.396 0.087 0.003

Initial 0.038 0.417 0.085 0.005

Timestamp 0.036 0.041 0.040 0.000

80ms

rtt1 0.081 0.569 0.123 0.004

rtt2 0.081 0.569 0.124 0.004

rtt3 0.081 0.569 0.123 0.004

Initial 0.074 0.569 0.126 0.006

Timestamp 0.076 0.081 0.080 0.000

120ms

rtt1 0.121 0.660 0.151 0.003

rtt2 0.121 0.660 0.151 0.003

rtt3 0.121 0.660 0.151 0.003

Initial 0.113 0.700 0.153 0.005

Timestamp 0.115 0.122 0.120 0.000

200ms

rtt1 0.200 0.661 0.227 0.003

rtt2 0.200 0.661 0.228 0.003

rtt3 0.200 0.661 0.227 0.003

Initial 0.190 0.712 0.224 0.005

Timestamp 0.195 0.201 0.200 0.000

400ms

rtt1 0.398 0.945 0.422 0.002

rtt2 0.398 0.945 0.423 0.002

rtt3 0.398 0.945 0.422 0.002

Initial 0.380 0.926 0.404 0.004

Timestamp 0.396 0.402 0.400 0.000

0.00

10.00k

20.00k

30.00k

40.00k

50.00k

60.00k

70.00k

19:14:50 19:14:55 19:15:00 19:15:05

Window
RTT1, RTT2, RTT3: 0.896162

Init RTTI: 0.715917

Theoretical RTT (0.400)
Timestamp RTT : 0.400307

Max Timestamp RTT: 0.854004

Figure 4. Observed timeseries of bytes for each RTT candidates.

Figure 5 shows the results from the estimators. The mean
is slightly lower for the initial RTT compared to the proposed
methods. The standard deviation is higher, which indicates a
higher variability on the measurement. Besides, it is worth
mentioning that for some cases the value obtained from the
initial RTT is a subestimation of the real RTT.

Finally, it should be noted that the proposed algorithms
check the validity of an RTT candidate by comparing the
observed bytes to the advertised window. Thus it needs that the
TCP connection is not filling the bandwidth× delay product
for the path. Otherwise the initial candidate RTT is an upper
RTT limit, giving no information. The limit is shown in
Figure 6 where the minimum RTT for a given bandwidth is
plotted. The points (bandwidth,RTT) under the line represent
situations where the algorithm does not work. This limit
depends on the maximum advertised window allowed by TCP
which is 64Kbytes for classical TCP but can be extended if
it accepts the window scale option. Figure 6 shows this limit

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.040 0.080 0.120 0.200 0.400

M
ea

n
R

T
T

 (
Se

co
nd

s)

Theorical RTT (Seconds)

RTT1 s
RTT2 s
RTT3

Init RTT s
Timestamp RTT s

Average value

Theoretical RTT

Figure 5. Average RTT and its deviation error obtained for all RTT tests.

for several values of the window scale option, from 64KB to
8MB.

For low bandwidth scenarios, the algorithm can be used
to estimate the RTT, provided TCP connections do not use
window scaling, or use low values. For higher speed scenarios
TCP connections with larger window scale option values can
be estimated. For example in a 1Gbps, data center network
using window size of 2MB, it is possible to estimate an RTT
larger than 16ms. In a longer link with 100Mbps, it is possible
to estimate RTTs larger than 40ms provided the window size
is 512KB or less. The low bandwidth (10Mbps) scenario used
for validation without window scale option allows to estimate
RTTs higher than 51.2ms. This can be checked at Table I where
the result for RTT1, RTT2 and RTT3 in the 40ms scenario
never gives an output lower than 52ms.

Nevertheless even if TCP endpoints agree to use certain
window scale value, it does not imply they will advertise the
maximum allowed window. Observations at authors’ university
access link show that even TCP connections usually negotiate
window scales allowing up to 8MB advertised windows.
However these connections afterwards do not advertise so large
windows. Figure 7 shows the survival function of the maxi-
mum advertised window used by connections compared to the
survival function of the maximum allowed advertised window
for the negotiated window scale. Note that around 30% con-
nections negotiate window scales that allow 512KB windows
but approximately just 15% actually advertise 512KB. Thus
around 85% of the observed link TCP connections will meet
the requirements to estimate RTTs larger than 40ms.

V. CONCLUSIONS

The RTT value is a key metric for performance evaluation
of a TCP connection. It determines the QoS perceived by the
user especially in application level protocols with multiple
requests like HTTP. The measurement of RTT is also a
requisite for deeper analysis of TCP behavior from passive
traffic captures.

However, the calculation of this value is non-trivial in a
loaded network as it has to be inferred from packet observed
traveling in both directions, taking into account too many
parameters such as disorders, retransmission, losses during the

 0

 0.2

 0.4

 0.6

 0.8

 1

1M 10M 100M 1G 10G

M
in

im
um

 R
T

T
 (

Se
co

nd
s)

BW (bps)

W: 64K, Wscale: 0
W: 128K, Wscale: 1
W: 256K, Wscale: 2
W: 512K, Wscale: 3

W: 1024K, Wscale: 4
W: 2048K, Wscale: 5
W: 4096K, Wscale: 6
W: 8192K, Wscale: 7

 0

 0.05

 0.1

 0.15

 0.2

10M 100M 1G

M
in

im
um

 R
T

T
 (

Se
co

nd
s)

BW (bps)

W: 64K, Wscale: 0
W: 128K, Wscale: 1
W: 256K, Wscale: 2
W: 512K, Wscale: 3

W: 1024K, Wscale: 4
W: 2048K, Wscale: 5
W: 4096K, Wscale: 6
W: 8192K, Wscale: 7

Figure 6. Mean RTT and its deviation error obtained for all RTT tests.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M

P(
A

dv
er

tis
ed

 w
in

do
w

 >
 x

)

Advertised Window (Bytes)

Maximum real Window
Maximum theoretical Window

Figure 7. Survival functions of the maximum advertised and allowed
windows

capture, etc. RTT can be measured by ICMP probing (Ping) or
similar active measurements, but sometimes active injection of
traffic is not an option and a passive methodology is preferred.

In this work, a passive methodology is presented to esti-
mate RTT from passive traffic capture. It has been compared

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

to two other classic passive methods: the use of the initial
TCP three-way-handshake time, and the observation of the
TCP timestamp option defined.

The three estimators are fully passive and can be used on
traffic traces.

The proposed algorithm provides an overestimation of the
actual RTT value. This is often desired as the values of RTT
is used to decide on a timescale above the RTT. The TCP
option timestamp estimator has the same property. It never
provides a measure lower than the actual RTT but it may
give a larger value. On the other hand the initial three-way-
handshake RTT may sometimes give smaller RTT samples
caused by the presence of middleboxes that answer or establish
the connection on behalf of one of the endpoints that is farther
away.

It has been shown that in an emulated scenario, the
proposed algorithm performs not as accurately as TCP times-
tamp option method but provides reasonable accuracy. TCP
timestamp option method is difficult to improve because it is
the observation of an active measurement. The problem with
TCP timestamp option method is that the passive estimator
requires that the TCP connections are using timestamp option
which is not common nowadays.

The proposed algorithm requires that the TCP connection
is not filling its bandwidth× delay product thus, it dependes
on the values of RTT and path bandwidth and also on the
window scale TCP option but may be used in every connection
regardless of its use of timestamp TCP option. Hence it allows
the passive estimation of RTT in high bandwidth scenarios
(like datacenter networks). In a traffic trace, it provides a RTT
estimation for a different set of TCP connections that times-
tamp option method increasing the number of RTT samples
that can be obtained from a captured trace.

ACKNOWLEDGMENT

The authors would want to thank Public University of
Navarra for funding through PIF grant.

REFERENCES

[1] L. Zhang, “Why TCP timers don’t work well,” in Proceedings
of the ACM SIGCOMM conference on Communications
architectures & protocols, 1986, Stowe, Vermont, United States
August 5-7, 1986, 1986, pp. 397–405. [Online]. Available:
http://doi.acm.org/10.1145/18172.18216

[2] S. D. Strowes, “Passively measuring tcp round-trip times,” Communica-
tions of the ACM, vol. 56, no. 10, 2013, pp. 57–64.

[3] “Tcp extensions for high performance. rfc 1323.” [Online]. Available:
https://tools.ietf.org/html/rfc1323 [accessed: 2015-05-29]

[4] B. Veal, K. Li, and D. Lowenthal, “New methods for passive estimation
of tcp round-trip times,” in Passive and Active Network Measurement,
ser. Lecture Notes in Computer Science, C. Dovrolis, Ed. Springer
Berlin Heidelberg, 2005, vol. 3431, pp. 121–134. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-31966-5 10

[5] H. Jiang and C. Dovrolis, “Passive estimation of tcp round-trip times,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, Jul. 2002, pp.
75–88. [Online]. Available: http://doi.acm.org/10.1145/571697.571725

[6] G. Lu and X. Li, “On the correspondency between tcp acknowledgment
packet and data packet,” in Proceedings of the 3rd ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’03.
New York, NY, USA: ACM, 2003, pp. 259–272. [Online]. Available:
http://doi.acm.org/10.1145/948205.948239

[7] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring
tcp connection characteristics through passive measurements,” in INFO-
COM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 3, March 2004, pp. 1582–1592 vol.3.

[8] “Netem.” [Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
[accessed: 2014-06-01]

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

