
Detecting Disruption Periods on TCP Servers with Passive Packet Traffic Analysis

Iria Prieto,

Mikel Izal,

Eduardo Magaña

and Daniel Morato

Public University of Navarre

Navarre, Spain

Email: iria.prieto, mikel.izal, eduardo.magana, daniel.morato @unavarra.com

Abstract—This paper presents a simple passive algorithm to mon-
itor service availability. The algorithm is based on packet counting
over a passive traffic trace of a population of clients accessing
servers of interest. The major advantage of the algorithm is that it
is passive and thus not invasive while usual monitor systems that
can be found on Internet are active probing agents. The proposed
system does not communicates to actual servers. It is easy to
build as an online monitoring system with no big constraints in
software or hardware. It does not relay on a distributed number
of network placements for probing agents but works on a single
network observing point near network edge. Initial proof of work
of the algorithm is presented by analyzing unavailability problems
for popular servers at an academic network at Public University
of Navarre.

Keywords–Availability service; network; traffic

I. INTRODUCTION

As networks constantly evolve, network application servers
are improved in software and hardware in order to cope
with the growth of client’s demand. In spite of this rapid
development, sometimes, clients can not gain access to the
servers due to communication problems or server saturation,
due to flash crowd demands, human errors, updates, routing
failures, etc.

Nowadays, even few minutes unavailability can be critical.
For an enterprise offering products to clients through a web
server, an interruption of this service means loss sales. Another
example which shows the threat of service interruption is the
use of an antivirus update server. In case of banks, or other
organization where security is a priority, an interruption of the
update server entails possible infection problems.

In order to detect when the clients of a network are not
being able to successfully use a server application, a wide
range of monitoring clients, such as Nagios [1], Zabbix [2],
Cacti [3], Munin [4], have been developed. These systems
warn the network administrator that a given server of interest
is unavailable. These kind of systems work based on active
probes, such as ICMP (Internet Control Message Protocol)
ping or automatically requesting a server web page in case of
monitoring HTTP (Hypertext Transfer Protocol) server. They
are required to be installed and configured in monitoring client
machines or at the server.

In cases where problems need to be detected at different
client networks, at least one client has to be installed on each
network. Otherwise, some problems will not be detected, like

cases of routing problems in the path from clients to the servers
of interest, if the monitoring client may use other route to reach
the server.

As it is shown by Liu et al. [5] depending of the location
of the system resources the application will achieve more
effectiveness. Therefore, depending on where our monitoring
clients will be located we would have only the vision of this
location. Also, checking the configuration of these monitoring
clients can be a problem for multi-tier system where the
number of them will be high. In the literature, some papers
explore how to face up testing the configuration in these
scenarios, [6]. Another problem of taking active measurement
across an entire network is that for wide networks it will not
be scalable and some paths should be chosen and the rest of
statistics inferred through predictive algorithms [7].

On the other hand, active probing can be a problem in high
loaded systems or when monitoring third party servers which
may not react well to external continuous requests. Nowadays,
more and more enterprises rely on public services on Internet
that would need to be monitored. In these cases, firewalls and
intrusion detectors may deny probes or even ban future normal
requests as response to continuous monitoring.

Configuring and using these kinds of distributed monitoring
systems is not trivial as shown by different studies on how to
approach the problem of monitoring for distributed programs,
[8]–[14].

Another disadvantage of active availability monitoring
comes from cases where the clients access servers through
proxy-caches. In that case, the monitoring client may be
requesting a webpage from the server and receiving a response
just because it is cached at the proxy system even if the final
server is unreachable or has some problem. Thus, the active
measurement does not actually check for server availability
and other clients in different networks or served by different
proxies may be experiencing access problems for the same
server. In these cases the system would not detect the problem
until the timeout of the cached object. This situation can
be addressed by proxy configuration (may not be an option
depending on proxy ownership) or crafting requests so they
are not cached.

In some cases, due to misconfiguration or network issues,
the monitoring client may experience problems to reach the
server while actual client access is working, thus giving rise
to false positive alerts to the network administrator. The cause

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

of this failures may be things as memory problems or CPU or
network overload of the monitoring client. This is often due
to the fact that the same agent is probing a large number of
servers. Therefore the dimensioning of these clients has to be
considered carefully.

Another issue to consider is the reaction time of the
monitoring system. The minimum and maximum acceptable
time for problem detection has to be decided. Longer times
imply slower reaction, smaller times may generate higher
overhead and interference to normal clients.

Currently the majority of cloud services available on the
Internet offer services over TCP protocol for communications
with clients [15], [16]. It has been observed that some servers,
due to overload, start refusing new TCP connections by
answering with RST packets to clients for some time. In many
cases the observed time of these kind of events is on the order
of seconds, but usually less than half a minute. After this event
the server recovers its normal behaviour and accept again new
clients. As stated before, even if it only lasts for seconds this
problem may be critical for some businesses, causing user
complaints and bad server reputation.

There have been proposals to cope with the downsides
of active monitoring. Schatzmann et al. [17] proposed a
method to detect temporary unreachability based on flow-level
analysis by capturing traces from different routes. Although
their method was able to work online the main disadvantage
was the need to monitor in different points of a network.
Besides, it should be taken into account that the setup of these
kinds of measurements is not an easy task [18].

The goal in this work is the development of a simple online
disruption detection method for TCP servers. This method
avoids active measurement and work just by passive observing
network traffic. The proposed method is based on simple
packet level counting such as the number of RST and data
packet received. It does not require large amounts of memory
or CPU power and it is able to detect problems for clients
in different networks and for different services without using
distributed agents. It will be shown that it is able to detect
micro-access-failures with a configurable granularity in the
reaction time.

The paper is organized as follows. First of all, the algo-
rithm and configuration parameters are introduced. Section III
describes the network scenario used to check the proposed
algorithm. Section IV presents the results, comparing it to
active detection of popular public services. Finally Sections
V and VI present conclusions and future work.

II. PROPOSED ALGORITHM

As stated in the introduction, the method is based on
passive traffic capture. By capturing traffic close to the clients
in a given network it will detect when some services will
not be available to this community (in this work, the sample
community will be the clients at Public University of Navarre
network). The main target of the proposed algorithm is to
find when a service disruption event has occurred, that means
that the clients on the monitored network can not successfully
use the service. The server may be down or may just be
unreachable from this point due to network or some other
problem. In any case this local unavailability is what the
network administrator wants to detect more than the global

server state. The objective is to detect availability problems,
including the case where clients are able to reach the servers
but not to use their services. To achieve this, a simple algorithm
has been proposed which does not require big hardware or
software constraints.

The flow of traffic from the clients to the servers of interest
is captured and some simple counters are evaluated every
fixed time interval. The counters used are the number of data
packets and reset packets sent by the full group of clients
and target servers seen during a given (i.e 5 seconds) time
interval. Reset packets are TCP protocol packets with RST flag
activated. They are used by a TCP endpoint to reject incoming
connections and also whenever an abnormal packet is received
by a TCP endpoint, to signal to the other side that it should
abort the connection. The algorithm bases on the fact that a
server sending just TCP RST packets and not any other valid
packet to a group of clients during even a small period of
time is an indicator of unavailability. Although sometimes it
has been observed that the servers finish their connections in an
unexpected way such as, sending RST packets to the clients
after a client has sent a Fin packet, the algorithm will not
show false positives since it will have a high probability that
another client will be sending or receiving data packets in the
same period. The mechanism consists on dividing time in fixed
sized intervals. On every interval the number of packets seen
from clients and servers are considered and related to previous
interval. When a client sends packets to servers which do not
send anything back to it, a server issue is suspected.

If in subsequent seconds the servers keep silent but send
reset packets the servers are confirmed as not working. Also,
if the client keep sending packets and the servers keep silent
it is confirmed as not working. The previous identification
idea is built with two simple filter for every interval. On
each time interval, counters for clients and servers are updated
in order to describe the situations explained before. On the
side of the client the counter is the number of packets sent
to the servers, regardless if they are data packets or not,
packet cli. On the other hand, on the side of the server, two
counters are taken into account: The number of data bytes sent,
bytes servers, and the number of packets with the reset flag
activated, reset packets.

If during a given interval the counters show the client was
sending packets but the servers did not send any data packet
(even they may send reset packets) the result of the first filter
for that time slot is 1. Also the result is 1 when there are
no packet sent by the client and the server only sends RST
packets. That indicates the server is not answering requests.
The second filter would be 1 whenever the result of the first
filter of the interval being analazying is 1 and the result of the
first filter of the previous interval was also 1. The process can
be easily explained through two membership functions, like
the ones used in fuzzy logic [19], which are applied in each
period. Firstly the used variables are defined:

• x= Number of client packets sent in an interval

• y= Server Bytes sent by the servers in an interval

• z= Number of RST packets sent by the servers in an
interval

• i = ith Interval to be analazyed.

• ψi(x, y, z)= First pass of the compound filter applied
in each interval i.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

• ϕi(ψi, ψi−1)= Second pass of the compound filter
applied in each interval i, it takes into account the
result of the first pass.

The two membership functions are described in the equa-
tion 1.

ψi(x, y, z) =

1 if ((x > 0) and (y = 0)) or
((x = 0) and (y = 0) and
(z > 0))

0 Otherwise

ϕi(ψi, ψi−1) =

{

1 if (ψi = 1) and (ψi−1 = 1)
0 Otherwise

(1)
Each period is labeled with the result of applying the two
membership functions, (ψi(x, y, z), ϕi(ψi, ψi−1)). When both
results are 1 an availability problem is considered for the
duration of both intervals. We define the unavailability period
since the first second of the interval labeled as (1, 1) until the
next interval labeled as (0, 0). An example of the algorithm
operation is shown in Table I

In the second interval of Table I, there was one packet
sent by a client but there was no data sent to him by servers
so the first flag is 1 and the second one is 0 because it was
the first suspected interval. After this first interval, the servers,
which belong to Hotmail service, sent 8 packets being all of
them TCP RST packets. As there were only reset packet we
label this second interval as (1, 1). During the next 5 seconds
the servers seem to have recovered because data packets from
servers are seen again.

The example is a real case disruption interval detected for
Hotmail server at the scenario. During that interval only reset
packets where captured from servers and the packet trace was
examined to show that servers were closing connections that
had been inactive for more than 30 seconds.

These resets were not a response to any observed packet so
it seems reasonable that the server was experiencing problems
and thus this is the kind of event the algorithm addresses. The
main parameter of the algorithm is the time interval duration,
that can be chosen by the network administrator depending
on the desired reaction time. Smaller values will increase
resolution and will detect microfailures but will also increase
false positives.

From our experience, values between 5 and 15 seconds are
recommended.

III. NETWORK SCENARIO

The algorithm has been developed and tested, detecting
availability problems of public internet servers for clients
at Public University of Navarre. Captured data comes from
author’s research group infrastructure who has access to a
sniffer with its own software between university main access
and academic internet provider (Rediris) as seen on Figure 1.
The group has an ongoing packet trace collection campaign
since 2004 providing 1Gbps traces from the access of an
academic community.

In this work, results are presented from captured data of the
week of November 7th to 11th, 2013, checking the availability
of popular servers at this community such as Facebook, Yahoo,

Figure 1. Traffic capturing from a University link

BBC and Hotmail. In order to compare the algorithm against
an active monitor (like Nagios [1]), a very basic probing
system is implemented. The active monitor tests the availability
of selected servers by requesting the site favicon.ico file.
This file provides an icon to be displayed at browser window
and is widely used by web servers. The program requests
the favicon file every 5 seconds for every service considered
in the experiment and thus provides a ground truth value of
availability for comparison purposes.

The active requests are performed from a desktop computer
at the university network. The number of servers probed is
not very large so the probing computer is not loaded and
no request failures can be attributed to machine overloading.
The proposed passive algorithm operates on traces obtained
at network edge as seen above. It is evaluated offline for the
results of this work, but may be easily programmed as an
online system.

As servers used are very popular, there are other sources
of availability information that were considered. Several web
pages provide down times and real time user complaints of
public servers but usually this information has not enough time
granularity to test less than ten minute disruption events.

IV. RESULTS

In this section results of unavailability detection with a
week trace of traffic are presented (November 7th to 11th,
2013). Public servers addressed are: “Yahoo”, “Facebook”,
“BBC”, “Hotmail” and also a local newspaper “Diario de
Navarra” which are frequently visited by users at the Uni-
versity. Those servers, except the local newspaper, are also
used by a large mass of users around the world and they are
served by a pool of different IP addresses. They are probably
distributed over large server farms or content distribution
networks.

But even if those farms are probably designed to balance
load and support peaks of demand, sometimes, the clients of
the University are not able to reach these services.

Experiments with the basic active monitor that request
favicon.ico file show the results in Table II for the servers
under analysis. Figure 2 shows the events of unavailability with
time. The service with more suspected intervals detected was
Hotmail.

To test the proposed algorithm the packet trace of a full
day is processed and the algorithm is applied on the traffic.
The rest of the results are for day 08/11/2013 although other
days are similar.

First, the network traffic is filtered to select packets from
the probing agent and selected servers of interest. Although
this is not the target of this work, addresses of these servers

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

TABLE I. EXAMPLE OF THE DOUBLE CHECK ALGORITHM DEVELOPED FOR A INTERVAL OF THE DAY 2013/11/8 AND HOTMAIL SERVERS

Start End Bytes Serv (x) RST Serv (z) Packet Cli (y) ψ ϕ

9:24:55 9:25:00 7016 0 14473 0 0

9:25:00 9:25:05 0 0 1 1 0

9:25:05 9:25:10 0 8 0 1 1

9:25:10 9:25:15 1699 1 3288 0 0

U
na

va
ila

bl
e

se
rv

ic
e

00:00h
07-11

00:00h
08-11

00:00h
09-11

00:00h
10-11

00:00h
11-11

00:00h
12-11

00:00h
13-11

00:00h
14-11

00:00h
15-11

00:00h
16-11

Facebook
Yahoo

Hotmail

Figure 2. Events of time where the favicon was not be obtained

TABLE II. UNAVAILABLE SERVICE INTERVALS DETECTED BY

REQUESTING THE FAVICON

Start End Day Service

0:15:49 00:16:58 07/11/2013 Facebook

3:10:01 03:10:06 07/11/2013 Facebook

13:36:35 13:36:51 08/11/2013 Hotmail

16:08:12 16:25:40 11/11/2013 Facebook

10:34:59 10:35:21 11/11/2013 Hotmail

10:10:23 10:10:29 13/11/2013 Yahoo

23:08:21 23:08:27 13/11/2013 Yahoo

11:08:54 11:09:06 14/11/2013 Hotmail

11:39:18 11:39:36 14/11/2013 Hotmail

22:43:00 22:43:05 14/11/2013 Hotmail

8:40:31 08:40:44 15/11/2013 Facebook

20:30:03 20:30:13 15/11/2013 Hotmail

4:22:29 04:22:34 15/11/2013 Facebook

have first to be identified. To solve this, the payload of packets
is examined to search for these server names in HTTP requests.

Both methods active and proposed algorithm show some
unavailability issues for the Hotmail service, see Figure 3.
The plot shows the volume of traffic from client machine
to Hotmail as well as the time events identified by the
passive algorithm and active favicon requester. Both algorithms
identified the same event. Packet level examination of the event
showed a single connection which suffered an unexpected reset
from the server. The comparison also revealed that the time
difference is due to the monitor client which was not NTP
synchronized as the passive sniffer is. This shows a point to
take into account in a distributed monitoring system when
monitor clients are distributed time synchronization plays a
critical role. The passive sniffer has a unique clock source so
the problem of synchronization is simplified.

Packet level analysis of previous event showed the dialog
of the packets below. The x.x.x.x represents the IP of the client
and the y.y.y.y the IP of a Hotmail server. After the connection
is established, the client sent the request through a push packet

0

5k

10k

15k

20k
13:30h 13:32h 13:34h 13:36h 13:38h 13:40h

U
na

va
ila

bl
e

Se
rv

ic
e

B
ps

Bps Upstream

Passive measurement

Simple active probing
(Getting favicon.ico)

5k

10k

15k

20k

B
ps

Bps Downstream

Figure 3. Intervals of time in which the monitoring client had problems for
day Nov 8th

of 176 bytes. Usually, after this packet was sent by the client
the server answered with the favicon.ico. However, in
this case the server sent an ACK packet without data and after
some seconds, around 11, closed the connection sending a reset
packet. This kind of behaviour is unexpected and during these
seconds the client would have noticed a malfunction using the
service.

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: S

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: S

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: . ack 1

13:36:02 IP x.x.x.x.59133 > y.y.y.y.http: P 176

13:36:02 IP y.y.y.y.http > x.x.x.x.59133: . ack 177

13:36:13 IP y.y.y.y.http > x.x.x.x.59133: R 1 ack 177

Others cases of non-typical reset packets were also ob-
served in the intervals of unavailability studied. In many cases,
before a server went down it did not answer to the clients,
and after some time it started to send them reset packets to
clients since they did not reconignize the previous established
connections.

A. Comparison between active probing vs passive analysis
unavailability detection method

The total traffic from all the clients using services that
previously have been identified to have unavailability periods
is analyzed. The objective is to distinguish the periods of time
where all the users experience service access problems of the
periods of time of isolated problems for individual clients.

To achieve this for each service, all the requested servers
are joined together to study if in some period the clients
were active but the servers were not working properly. The
proposed algorithm is applied to the aggregated network traffic.
The algorithm is configured using the IP addresses of all the
servers as an unique service to be monitored and a time interval
duration of 5 seconds. The unavailability events detected are
shown in Figure 4. Interestingly there are more unavailable

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

TABLE III. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

09:25:05 09:25:15

10:50:00 10:50:10

14:22:40 14:22:50

14:59:40 14:59:50

15:35:00 15:35:10

15:47:15 15:47:25

16:22:05 16:22:15

17:21:10 17:21:30

19:06:50 19:07:00

19:07:20 19:07:35

19:13:35 19:14:05

19:16:10 19:16:30

periods detected that way than the issues detected by using
the favicon requester alone.

U
na

va
ila

bl
e

00:00h 04:00h 09:00h 14:00h 19:00h 00:00h

Simple active probing (Getting favicon.ico)
Passive Measurement by a known PC

Passive Measurement by all clients

Figure 4. Comparison of the events of unavailable Hotmail service detected
from request client for day Nov 8th

The previous event which was observed through the fav-
icon.ico requests and observing the traffic for a single client
who requests the favicon.ico, Figure 3, now is not labeled as
problematic because at the same time other clients were able
to use Hotmail. This interval was a problem of one server
giving service to an individual client but it was not a problem
of availability for the observed server since other clients were
using the same service (other IP addresses of the same service).
Thus this is revealed as a false positive warning that shows the
risk of using only the monitoring client as a method to detect
service failures.

But this experiment show other more important fact. By
using the service as an aggregation of individual IP address of
servers we are able to identify some unavailability intervals of
a few seconds where the clients were suffering access problems
but were not detected by active monitoring clients.These
periods were not observed by the monitoring client because
the favicon.ico was served by a proxy cache. Table III shows
all the final disruption events detected.

These periods correspond to the sending of unexpected
resets by the severs to the clients. The study of the traffic
did not reveal any previously wrong behaviour of the clients
which could provoke the send of resets packets by the server.
During this seconds, suddenly one or more servers decide to
abort the established connections with one or more different
clients. As the duration of the intervals were short, these were

not actually critical disruptions since the next connections were
established. In case that this kind of periods had to be ignored
it may be done by just increasing the time interval duration
for example to 10 seconds.

TABLE IV. UNAVAILABLE HOTMAIL SERVICE INTERVALS

Start End

15:34:50 15:35:10

19:13:40 19:14:10

Table IV shows events detected from the same traffic by
using an interval duration of 10 seconds. Two cases detected
correspond to two intervals of 20 and 30 seconds. During
this time there were only reset packets sent from the servers
to clients, which have previously completed a connection
establishment. Other intervals of 10 seconds are not detected
since as the service recovered faster the reset packets sent in
order to abort client connections felt inside the same interval
as the data packets sent by the servers once that they had
recovered. Also, the intervals may not coincide exactly due to
interval and event synchronization. The maximum error will
be given by the minimum interval of time considered. For
example, in the examples presented in this paper, the time
of the disruption would be more or less 5 seconds since the
interval is said, or 10 seconds when this is the used time
interval.

We have checked also the rest of services whose some
intervals were detected as unavailable by the monitoring client.
The study of the traffic did not reveal any period with pro-
blems, there were not any interval of time where the server
did not answer to the clients. The periods showed by the
monitoring client were due to problems of the own client with
the proxy cache or a particular server but not with the service.

B. Traffic profiling of the requested services

As a sanity check the full volume of traffic from the scenery
network to the servers is observed to check that the amount
of traffic was significant. Traffic for the 8th of November
to Hotmail service is shown in Figure 5. Hotmail is shown
since it is the service with more disruption events detected by
the algorithms. The intervals of unavailability detected by the
algorithm are drawn also. The first plot shows a full day of
traffic and the second one zooms to 1 hour around the previous
discussed event.

It can be seen that the amount of traffic suggest the service
is working and the gap around 15:35:10 is clearly visible. After
these period without traffic the service seem to reestablish
normally, creating a traffic peak after the detected problem
that reaches almost 5 MBps.

V. CONCLUSIONS

In this paper a simple algorithm to detect periods of
unavailability services has been presented. It is based only on
passive capture of traffic.

Although there are more service monitoring software avail-
able, to the authors best knowledge, they are based on active
probing systems. Active monitoring presents some disadvan-
tages which may discourage network administrators of its use
in scenarios where the impact of the monitoring needs to be
minimized. First, because it requires to check if a service

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

1M

2M

3M

4M

5M

6M
15:00h 15:10h 15:20h 15:30h 15:40h 15:50h 16:00h

U
na

va
ila

bl
e

Se
rv

ic
e

B
ps

Bps Upstream
Unavailable interval detected

0

1M

2M

3M

4M

5M

6M

B
ps

Bps Downstream

Figure 5. Bps for the use of Hotmail service by the university community

is available it would imply to make periodically requests to
different servers. In some scenarios, like high loaded servers
or monitoring third party services it is not be possible to
make these requests as frequently as needed, in order to avoid
overhead or security alarms. Apart from that, the probing
requests should be chosen carefully in order to avoid problems
with proxy caches which could give the impression that the
service is working properly while other clients would not be
able to use the service. Another problem is the difficulty to
select a location for monitoring clients in multiple subnet
scenarios. In these cases, at least a pair of clients should be
placed in each subnet in order to detect possible problems
inside. Moreover, every client should be clock synchronized
in order to report coherent times with the rest of monitoring
clients.

As the proposed model is passive and based only on the
study of packet counts between servers and clients it will
not interfere with the traffic on the network. Therefore, any
problem of interference, monitoring client overload, network
problems with measured server availability is avoided.

Another advantage of using the proposed model is that
it is based in a single location. That means the measure is
not dependent on the location of multiple monitoring agents.
The network administrator have just to select an appropriate
passive observing location, where it can see the traffic between
the population of clients to monitor and the servers of interest.
This is a much simpler decision that can be typically solved
by placing the sniffer at organization’s network’s edge.

VI. FUTURE WORK

Currently, we are working to extend the algorithm to detect
service failures without focusing on specific servers, just by
analyzing sniffed traffic and applying the current algorithm to
every connection seen. In this manner the algorithm can work
as an service anomaly detection system that warns adminis-
trator of service issues. This is useful in large organizations
that may not have a clear list of services accessed by users but
nevertheless need to react to service unavailability problems.

An improvement that can be implemented in order to
reduce the number of false positives, is to use the two mem-
bership functions described in the algorithm to apply some
method of fuzzy logic.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Sci-
ence and Innovation through the research project INSTINCT
(TEC-2010-21178-C02-01). Also, the authors want to thank
Public University of Navarra for funding through PIF grant

REFERENCES

[1] “NAGIOS, a commercial-grade network flow data analysis solution,”
2009-2015. [Online]. Available: http://www.nagios.com/ [accessed:
2015-01-30]

[2] “ZABBIX, the ultimate enterprise-level software designed for
monitoring availability and performance of it infrastructure
components,” 2001-2014. [Online]. Available: http://www.zabbix.com
[accessed: 2015-02-02]

[3] “CACTI, a complete network graphing solution.” 2004-2012. [Online].
Available: http://www.cacti.net/ [accessed: 2014-12-29]

[4] “MUNIN, networked resource monitoring tool,” 2003-2013. [Online].
Available: http://munin-monitoring.org/ [accessed: 2015-01-15]

[5] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-tiered
web applications using queueing predictor,” in Network Operations and
Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, 2006,
pp. 106–114.

[6] D.-J. Lan, P. N. Liu, J. Hou, M. Ye, and L. Liu, “Service-enabled
automatic framework for testing and tuning multi-tier system,” in e-
Business Engineering, 2008. ICEBE ’08. IEEE International Conference
on, 2008, pp. 79–86.

[7] D. Chua, E. Kolaczyk, and M. Crovella, “Efficient monitoring of end-
to-end network properties,” in INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, 2005, pp. 1701–1711.

[8] Y. Park, “Systems monitoring using petri nets,” in Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997
IEEE International Conference on, vol. 4, 1997, pp. 3245–3248.

[9] C. H. Choi, M. G. Choi, and S. D. Kim, “CSMonitor: a visual clien-
t/server monitor for corba-based distributed applications,” in Software
Engineering Conference, 1998. Proceedings. 1998 Asia Pacific, 1998,
pp. 338–345.

[10] C. Steigner, J. Wilke, and I. Wulff, “Integrated performance monitoring
of client/server software,” in Universal Multiservice Networks, 2000.
ECUMN 2000. 1st European Conference on, 2000, pp. 395–402.

[11] G. Song, “The study and design of network traffic monitoring based
on socket,” in Computational and Information Sciences (ICCIS), 2012
Fourth International Conference on, 2012, pp. 845–848.

[12] G. Fang, Z. Deng, and H. Ma, “Network traffic monitoring based on
mining frequent patterns,” in Fuzzy Systems and Knowledge Discovery,
2009. FSKD ’09. Sixth International Conference on, vol. 7, 2009, pp.
571–575.

[13] A. Tachibana, S. Ano, and M. Tsuru, “Selecting measurement paths
for efficient network monitoring and diagnosis under operational con-
straints,” in Intelligent Networking and Collaborative Systems (INCoS),
2011 Third International Conference on, 2011, pp. 621–626.

[14] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and
faults in IP networks,” in INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications. IEEE
Societies, vol. 1, 2003, pp. 134–144.

[15] K. Claffy, G. Miller, and K. Thompson, “The nature of the beast: Recent
traffic measurements from an Internet backbone,” in International Net-
working Conference (INET) ’98. Geneva, Switzerland: The Internet
Society, Jul 1998, pp. 1–1.

[16] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” in Proceedings of the 2011
31st International Conference on Distributed Computing Systems, ser.
ICDCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
310–321. [Online]. Available: http://dx.doi.org/10.1109/ICDCS.2011.27

[17] D. Schatzmann, S. Leinen, J. Kgel, and W. Mhlbauer, “FACT: Flow-
based approach for connectivity tracking,” in Passive and Active Mea-
surement, ser. Lecture Notes in Computer Science, N. Spring and
G. Riley, Eds. Springer Berlin Heidelberg, 2011, vol. 6579, pp. 214–
223.

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

[18] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” vol. PP, no. 99, 2014, pp. 1–1.

[19] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Prentice Hall New
Jersey, 1995, vol. 4.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

