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Abstract—Network traffic monitoring systems have to deal
with a challenging problem: the traffic capturing process almost
invariably produces duplicate packets. In spite of this, and in con-
trast with other fields, there is no scientific literature addressing
it. This paper establishes the theoretical background concerning
data duplication in network traffic analysis: generating mecha-
nisms, types of duplicates and their characteristics are described.
On this basis, a duplicate detection and removal methodology
is proposed. Moreover, an analytical and experimental study is
presented, whose results provide a dimensioning rule for this
methodology.

Index Terms—Network analysis, network monitoring, traffic
capturing, packet duplication.

I. I NTRODUCTION

Data duplication is a generic problem in the broad field
of data engineering and information systems. There is a lot
of affected disciplines that have worked very hard on this
topic over the years like, for example, the fields of statistics,
databases or artificial intelligence [1], [2]. In network traffic
monitoring and analysis, data duplication appears as duplicate
packets.

Most techniques belonging to this discipline rely on a first
step of capturing network packets. There are several ways to
capture traffic from Ethernet-based packet-switched networks,
but the best suited to meet today’s requirements is called port
mirroring (Switched Port Analyzeror SPAN in Cisco Systems
nomenclature). Network hardware, like switches and routers,
usually implements this functionality. These devices havethe
ability to monitor multiple high speed links and send a copy
of every packet to a mirror port that can be used to capture
traffic.

Manufacturers like Cisco or Hewlett-Packard also allow
monitoring Virtual LANs (VLANs) in their equipment. This
feature makes monitoring easier and, therefore, it is the most
common practice. This mechanism is simply a shortcut to
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Fig. 1. A very simple port mirroring scheme.

monitor all the ports that belong to a particular VLAN in a
single command. Therefore, hereafter we will usemonitored
port to refer indistinctly to both cases, port-based SPAN or
VLAN-based SPAN, because in fact they represent the same
problem.

Fig. 1 shows a very simple port mirroring scheme in which
a single port is being monitored. PC A in VLAN 1 sends
IP packets to PC C in VLAN 2. These packets are routed at
the multilayer switch. At the mirror port of the switch, we
obtain both the ingress and egress copies from every packet
belonging to this stream, which constitute duplicate packets. It
is obvious that monitoring only the ingress traffic to this port
avoids data duplication, but in such a case, a packet coming
from PC B to PC A or C would not be captured.

It’s important to note that not all the traffic is duplicated,
but only those packets coming to a monitored port and leaving
from another monitored port (or the same one). This is the
essence of duplicate packets. In Fig.1, the traffic between
PCs A-C will be duplicated, but the traffic between PCs B-C
and A-B will not.

This simple example shows that, in a practical way, du-
plicate packets are unavoidable. Every packet traversing two
monitored links will appear twice in the network trace. As
a result, those duplicates constitute a noise signal that may
mislead subsequent analysis in two main ways:

• Perverting the volume of information. Packet dupli-
cation implies throughput duplication, which impacts on
Service Level Agreement (SLA) planning and threshold-
based alerting. Moreover, this throughput duplication
does not occur in a homogeneous fashion: as has al-
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Fig. 2. Three packets crossing a device with some monitored ports. The
horizontal axis represents time. The mirror port is supposed to be a faster
port.

ready been mentioned, some traffic may be affected and
other may not. This point turns into estimation errors
in traffic characterization through the traffic matrix, the
identification of heavy hitters or the analysis of packet
size distributions, protocol/application mix, etc.

• Complicating the tracking of stateful connections. For
example, duplicate sequence numbers within TCP con-
nections can be mistaken for valid TCP retransmissions.

Nevertheless, in spite of its importance, too little attention
has been paid to this packet duplication problem. This work
is intended to fill this gap. The main contributions of this
paper are the analysis of the problem, with a description
and classification of the different types of duplicates; the
development of a methodology for network packet duplicate
detection and removal, and an analytical and experimental
dimensioning of this methodology.

The remainder of the paper is organized as follows. Sec-
tion II describes the problem of duplicate packets in net-
work traffic monitoring. We discuss several mechanisms that
produce distinct types of duplicates. SectionIII presents a
methodology for off-line detection of duplicate packets inor-
der to avoid them in subsequent analysis. SectionIV discusses
efficiency aspects. We present some analytical and experimen-
tal results and their implications on the fine tuning of our
methodology. A dimensioning rule regarding our approach is
provided. Finally, SectionV summarizes the conclusions of
this paper.

II. D UPLICATES IN NETWORK TRAFFIC MONITORING

The analysis presented in this section is referred but not
limited to a switched Ethernet environment, and the layer 3
is supposed to be IPv4. The IPv6 case is analogous, with the
caveat that the IP identification field disappears.

Fig. 2 shows a schematic of three packets crossing a network
device (switch, router...) with some monitored ports:

• Packet 1 comes into a not monitored port and goes to a
monitored one.

TABLE I
PACKET MODIFICATIONS FOR DIFFERENT TYPES OF DUPLICATES

Type Layer Change May change

Switching

2 Trunking encap.

3
DSCP value

Checksum

Routing

2
Source address Trunking encap.

Destination address

3
TTL DSCP value

Checksum Options

NAT routing

2
Source address Trunking encap.

Destination address

3

TTL DSCP value

Checksum Options

Source address

Destination address

4
TCP/UDP checksum Source port

Destination port

Proxying

2
Source address Trunking encap.

Destination address

3

Checksum DSCP value

Source address

Destination address

4
TCP/UDP checksum Sequence number

ACK number

• Packet 2 comes into and leaves from a monitored port,
therefore it becomes a duplicate at the mirror port.

• Packet 3 comes into a monitored port and goes to a not
monitored one (not represented).

It is assumed that the packets are copied to the mirror after
being received or transmitted. Those are the three possible
behaviours at any monitored device, and only the second
one produces duplicates. Determining which streams will be
duplicated becomes challenging in general. Those duplicates
consist of an ingress and an egress copy of the same packet.
As can be seen in Fig.2, there is a time lag between copies as
a consequence of the switching time and the queueing delay,
and a variable number of other packets may fall between them.

Moreover, the egress copy can undergo different switching
mechanisms that cause distinct types of duplicates. While
packet payloads in general remain unchanged, the switching
processes (i.e., switching at layer 2, routing, etc.) couldlead
to several changes in packet headers at various levels of the
protocol stack, even when switching at layer 2.

In summary, it is not enough to look for identical packets
like some approaches do [3]. On the whole, several fields will
change, others might or might not change, and others remain
the same, like the packet payload. We are going to classify the
duplicates depending on the generating mechanism. TableI
summarizes the expected changes at different layers.

A. Switching duplicates

They are generated by a switching process at layer 2: the
packets enter and leave the device within the same VLAN.

duplicates.eps


Even so, there are some header fields that could change. For
example, the egress port could be a trunking port while the
ingress not, which implies that egress packets incorporatea
802.1Q VLAN tag at the link layer. In the same manner,
the device could be applying QoS policies and thereby the
outgoing packets could have different 802.1p priority at Eth-
ernet level or different DSCP value at IP level (wherewith
the IP checksum also changes). Note that these changes due
to classification and marking could happen for all types of
duplicates.

These duplicates can represent up to 50 % of the traffic
captured (even more in particular conditions of packet flood-
ing). They distort MAC-to-MAC stream analysis, hence all
the higher layers will be affected. Some equipment, like HP
ProCurve switches, are able to automatically suppress these
duplicates, but only when the ingress and the egress copies
are identical.

B. Routing duplicates

They are generated by a switching process at layer 3 (or
routing). This was the example shown in Fig.1. In this process,
some alterations must occur:

• The source MAC address is replaced with the device
address.

• The destination MAC address is replaced with the next
hop address.

• The Time To Live (TTL) value is decreased by one.
• The IP checksum is recalculated.
• The IP options may change.

C. NAT Routing duplicates

If the router from the previous case is also working as a Net-
work Address Translation (NAT) device, additional changes
are expected to occur [4]:

• The source IP address is replaced with the external
address if the packet is leaving the private network. In the
opposite direction, the destination IP address is replaced
with the internal address.

• Both IP addresses are included in the pseudo-header used
for IP and TCP/UDP checksum calculation. Therefore,
they need to be recalculated.

This behaviour constitutes a basic NAT, but it can be
extended with port translation:

• The source TCP/UDP port is replaced with a mapped
port if the packet is leaving the private network. In
the opposite direction, the destination TCP/UDP port is
replaced with the original port.

D. Transparent proxying duplicates

Transparent proxies and reverse proxies (load balancers) are
not uncommon. These devices serve as a basic NAT with
transport layer rewriting ability, a technique calleddelayed
binding or TCP splicing[5]:

• The TCP sequence number is rewritten if the packet is
travelling from client to server. In the opposite direction,
the TCP ACK number is rewritten.

Fig. 3. Sliding window for duplicate detection.

E. Other rare cases

Today’s network infrastructures are dotted with heteroge-
neous devices that may give rise to unexpected behaviours.
Many of these behaviours may respond to, or be consequence
of, security reasons. For example, a NAT device effectively
isolates a private network from incoming connections, but it
also malfunctions with special protocols that carry connection
information (IP, port) at application level, such as File Transfer
Protocol (FTP) in active mode. Therefore, some of these NATs
work as Application Layer Gateways (ALGs) and are able to
rewrite the payload [6].

Some of these rare cases are unusual and require special
treatment. In the present state, our methodology avoids them.

III. D UPLICATE DETECTION METHODOLOGY

Duplicate packets are not in general identical. Although
choosing to compare only payloads might be a good first ap-
proach (note, however, that there will be many packets without
payload), knowing the type of duplicates is very valuable in
order to understand the traffic patterns. This information can
only be obtained from packet headers. Indeed, most analysis
may require full deduplication, but some of them may not:

• If we are calculating the utilization factor per VLAN,
switching duplicates must be removed, but routing dupli-
cates must not.

• Transport level statistics require removing the routing,
routing NAT and proxying duplicates too.

• Preserving the routing NAT and proxying duplicates
allows us to study both sides of the NAT or proxy.

Our methodology works off-line on previously saved cap-
tures. It relies on a simple sliding-window model. Every packet
is compared against the packets in a windowed buffer using
policies derived from the previous section. There is a prototype
of this methodology coded in C available at Github [7].

A. The sliding window

Fig. 3 shows the sliding window behaviour. The steps are
described below:

1) With a window of sizek, then-th packet is read from
the trace file.

2) Then-th packet is compared against every packet in the
window, fromn− 1 to n− k.

3) If a match is found at thei-th comparison, then-th
packet is marked as a duplicate from then − i. The
search through the window stops.

window.eps


4) Then-th packet is added to the window.
5) The window is trimmed to fit a maximum size (older

packets are removed).

B. Packet comparison process

Every packet is dissected in order to determine the highest
layer payload that remains unchanged according to our anal-
ysis (other protocols might be examined and added):

• The TCP/UDP payload.
• The IP payload for non-TCP/UDP packets.
• The Ethernet payload for non-IP packets.

This payload is compared first. If it matches, the header
fields are used in order to confirm the identification and decide
the type of duplicate. SectionII classifies the distinct types of
duplicates and analyzes the expected changes. The rules below
must be followed:

• Fields that do not change. All of them must be com-
pared.

• Fields that change. TTL and checksums are not com-
pared. Source and destination MACs must be compared
to ensure that they change.

• Fields that may change. Trunking encapsulation,
DSCP value and options are not compared. The
pairs source/destination IP, source/destination port and
ACK/sequence number are compared to ensure that only
one changes and the other remains the same.

Each type of duplicate has a specific comparator that
implements these policies.

IV. EFFICIENCY ASPECTS

A. Efficiency of a single comparison

According to the previous section, there is a set of fields in
a packet that are essential to resolve a duplicate pair. On the
other hand, it may be obvious that a pair does not match using
a small subset of fields. Therefore, it is important to determine
the best order of comparison to avoid wasting valuable time.

The payload constitutes the most significant difference be-
tween non-duplicate packets. In order to prove this assumption,
we collected a one-day capture at our university’s outgoing
link. Starting from the deduplicated trace (of around2 · 109

packets), every packet payload was compared against the entire
window using the described methodology. For each pair, we
collected how many bytes were compared until the mismatch
was found.

Four window sizes were tested: 0.1 ms (∼ 9 · 109 compar-
isons), 1 ms (∼ 6 · 1010 comparisons), 10 ms (∼ 5 · 1011

comparisons) and 100 ms (∼ 5 · 1012 comparisons). The
probability survival curve in Fig.4 shows that, at worst, about
50 % of non-duplicate pairs were discarded before entering
the payload comparison (because protocols or payload sizes
didn’t match or were equal to zero), and the following 49 %
was discarded within the first two bytes.

This finding states that comparing the payload in the first
place, before the header fields, is more efficient in order to
discard non-duplicate pairs.
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Fig. 4. Survival curves for the byte-by-byte payload comparison process
with a deduplicated capture. Four window sizes were considered.

B. Reducing the number of comparisons

In the worst case, a non-duplicate packet is compared
against the entire window. Therefore, using the smallest possi-
ble window without compromising the quality of the detection
process is desirable because the algorithm complexity scales
linearly with this size. This size can be established in terms
of time (time-sliding window) or number of packets (element-
based sliding window). In order to decide the window size, we
are interested in the maximum distance between duplicates.

Previous sections established that a pair of duplicates is
formed by an ingress and an egress copy of the same packet.
We are going to assume that the switch internally behaves as
follows:

1) One packet arrives at a monitored port.
2) The mirror port gets the ingress copy.
3) The packet is switched to an output queue of another

(or the same) monitored port.
4) After the queue, the mirror port gets the egress copy.
5) The packet is transmitted.
This behaviour is going to be analytically modeled and

experimentally tested.
Between both copies, there is a time spent in the systemsn

that can be decomposed into the switching time (or decision
time) xn and the queueing time (or waiting time in the output
queue)wn. Applying the expectation operator:

s̄ = x̄+ w̄ (1)

The time spent in the system can be measured as the time
difference between the ingress and egress copy of a packet at
the mirror port. Within this lag, several copies of other packets
might be sent to the mirror port and fall between them, as
seen in Fig.2. In our model, the packet difference between
duplicates,∆n, is expected to be proportional to this system
time:

∆̄n =
∑

µis̄ (2)

survival.eps


Fig. 5. Experimental setup.

whereµi is the average service rate at thei-th monitored port,
what we shall call interfering traffic (i.e., packets 1 and 3 in
Fig. 2).

This simple model predicts a device-dependent upper bound
in terms of time. On the other hand, the number of packets
falling between duplicates grows linearly with the device load.
In order to test this hypothesis, we conducted an experimental
study making use of our implementation [7]. Fig. 5 sketches
the experimental setup. Three streams are defined:

1) Main stream: it is monitored at both the incoming and
the outgoing link, so it produces duplicate packets.

2) Auxiliary stream: it is monitored at the outgoing link in
the same port that the main stream. It allows us to force
queueing at this port.

3) Interfering stream: it is monitored once at the incoming
link and lets us insert packets between duplicates at
different rates.

Our testbed comprises the following hardware:

• One Cisco Catalyst 3560 Switch with 8 FastEthernet ports
and 1 Gigabit port (used as mirror port).

• Two Dell PowerEdge T110 servers with Intel Xeon
X3460 2.8 GHz CPU, 4 GB DDR3 RAM and Intel
Gigabit E1G44ET Quad Port PCIe card.

The aim of this experiment is to evaluate the impact of the
interfering stream into the maximum distance between dupli-
cates. Main and auxiliary streams are formed by maximum
size Ethernet packets (PDU+ headers+ MAC preamble+
frame delimiter+ CRC+ inter-frame gap= 1538 octets) in
order to maximize the processing time. The interfering stream
is formed by minimum size packets (84 octets), allowing us to
sweep a longer range of packets per second. All these streams
were generad with exponential interarrival times, making use
of the software D-ITG [8].

If no losses occur at the output queue, it is equivalent to
an infinite queue. Furthermore, if we suppose approximately
Poisson arrivals and a deterministic service time, the output
queue can be described as a M/D/1. Based on this premise,
we can calculate the average queue length [9]:

N̄q =
ρ2

2(1− ρ)
(3)

TABLE II
INTERFERING STREAM RATES WITH84 BYTE PACKETS.

Rate (pps) Rate (Mbps)

5000 3.36

25000 16.80

45000 30.24

65000 43.68

85000 57.12

105000 70.56

125000 84.00

and the system time [9]:

s̄ =
δ

2

(

2− ρ

1− ρ

)

(4)

whereρ is the utilization factor andδ is the service time. The
default maximum length of the output queue for our Cisco
3560 switch is 40 packets. In order to avoid losses, we target
an average queue length of 5 packets. Thus, Equation (3) with
N̄q = 5 gives a utilization factorρ ≈ 0.916, or 91.6 of
100 Mbps (45.8 Mbps, or 3722 pps, per stream). A greater
utilization factor increases the system time. Therefore, we are
working with a moderately bad case.

The deterministic service time can be obtained as follows:

δ =
L

C
(5)

whereL is the length of packets for the main stream (L =
1538 · 8 bits) andC is the link capacity (C = 100 Mbps).
With these values, Equation (4) predicts an average system
time s̄ ≈ 0.79 ms.

Different interfering stream rates were used, as shown in
Table II . For each case, a traffic capture was collected and
analyzed so as to extract time differences and number of
packets between packet pairs comprising duplicates. Fig.6
compares the measured average time difference with the
theoretical value. As expected, our model predicts the mean
time spent in the system. It is constant and independent from
the interfering stream rate. Fig.7 shows the linear growth
predicted in the average number of packets falling between
duplicates as the interfering stream rate increases.

The number of packets falling between duplicates depends
as much on the system time as on the packet arrival rate of
the interfering traffic. Meanwhile, the time difference depends
only on the system time. As a result, a time-sliding window
becomes the best strategy.

Furthermore, it can be assumed that the switching time is
negligible as compared to the queueing time (xn << wn).
This fact suggests that an upper limit for the system time
could be established as follows:

max(sn) ≈ max(wn) =
max(Nq) ·max(M)

C
(6)

wheremax(Nq) is the maximum length of the output queue,
max(M) is the maximum length of a packet in that port and
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Fig. 6. Average time difference between duplicates.
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Fig. 7. Average number of packets between duplicates.

C is the link capacity. With our testbed,max(Nq) = 40,
max(M) = 1538 · 8 bits, C = 100 Mbps andmax(sn) ≈
5 ms.

On the other hand, this study does not take into account the
potential effect of a congested mirror port. The reason is that
this scenario would have a harmful effect into a monitoring
system because of losses, and therefore it needs to be avoided.
In our experiments, the mirror port deals with an utilization
factor of about 0.2 (200/1000 Mbps), which means that there
can be an additional queueing delay.

In summary, the time difference between duplicates involves
three contributions: the switching timexn, the queueing time
at output portwn and the queueing time at mirror portw′

n.
Being very cautious and assuming thatxn ≤ wn andw′

n ≈
wn, Equation (6) can be modified to infer a time-based upper
limit for the window size (WS):

WS =
3 ·max(Nq) ·max(M)

min(C)
(7)

wheremax(Nq) is the maximum length of the largest queue,

max(M) is the maximum length of a packet andmin(C)
is the slowest link capacity. In our case, a window size of
WS = 15 ms would be advisable. In fact, the maximum
separation observed was 8.3 ms.

C. Towards an on-line detection methodology

This work proposes an off-line methodology. However,
many monitoring tools perform on-line traffic analysis without
saving network packets to disk. Moreover, one of the most
harmful effects of duplicate packets is that they consume a lot
of bandwidth at the mirror port. Accordingly, it seems clear
that it would be desirable to include an on-line methodologyin
network devices. Unfortunately, making searches over a sliding
window are a very heavy task. Thus, even with parallelization,
on-line detection becomes challenging.

Nevertheless, as mentioned in a previous section, duplicates
emerge because of a fixed configuration and, therefore, they
occur in a deterministic way. It should be possible to find
an algorithm that learns how duplicates are generated. After
the learning phase, this algorithm could be able to remove
duplicates without further analysis. In this way, an on-line
detection methodology would be feasible and needs to be
further investigated.

V. CONCLUSIONS

This paper addresses an important and unattended problem
concerning network traffic monitoring activities. The theoret-
ical background has been exposed: generating mechanisms,
types of duplicates and their characteristics are described.
Within this context, a detection methodology is proposed,
which shall serve as reference for future works.

Moreover, an analytical and experimental study has been
conducted regarding the fine tuning of this methodology. As
a result, the use of a time-sliding window is recommended.
The dimensioning rule provided slightly overestimates the
maximum distance between duplicates. Thus, further research
with other equipment is needed in order to refine this result.
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