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Traffic generator using Perlin Noise
Iria Prieto, Mikel Izal, Daniel Morato, Eduardo Magaña

Abstract—Study of high speed networks such as optical next
generation burst or packet switched networks require large
amounts of synthetic traffic to feed simulators. Methods to
generate self-similar long range dependent traffic already exist
but they usually work by generating large blocks of traffic of
fixed time duration. This limits simulated time or require very
high amount of data to be stored before simulation. On this
work it is shown how self-similar traffic can be generated using
Perlin Noise, an algorithm commonly used to generate 2D/3D
noise for natural looking graphics. 1-dimension Perlin Noise can
be interpreted as network traffic and used to generate long
range dependent traffic for network simulation. The algorithm
is compared to more classical approach Random Midpoint
Displacement showing at traffic generated is similar but can be
generated continuously with no fixed block size.

Index Terms—Optical, Perlin noise, traffic, generator

I. INTRODUCTION

THE fast growth of computer networks and the constant

development of new services with different requirements,

make necessary the design and study of different protocols and

technologies through simulation. This is specially important in

the case of optical next generation networks, in order to obtain

results and compare performance of still-not-implemented

services on network architectures.

In order to simulate the behavior of these networks, different

traffic models have been used in the literature: Poisson pro-

cess, Markovian chains, autoregressive models... However, to

capture long range dependence (LRD) of real network traffic,

self-similar models are the preferred choice (i.e. for Ethernet

LAN, [1], [2] and also in variable bit rate (VBR) compressed

video, [3], [4], [5], [6], [7], [8]). Fractional Brownian Traffic

is a self-similar traffic model which models the cumulative

amount of traffic arrived, as a continuous function with

gaussian increments. This increments form what is called a

Fractional Gaussian Noise (FGN). FGN is characterized by

three parameters. Mean and variance are the parameters of

the marginal distribution of arrival process per unit time. The

third parameter is the Hurst parameter (H) which measures

burstiness of the process. H = 0.5 corresponds to the pure

gaussian noise with independent arrivals (which is self-similar

but not long range dependent). Larger values of H < 1 give

increasing dependent processes being H = 0.8 − 0.7 typical

values for Internet traces, citeIzal2006.

One Fractional Gaussian Noise, FGN, process is described

in [9]. Due to the computational cost of the method, O(N2),
several methods have been proposed after this, [10], [11].

In order to achieve a compromise between computational
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cost and accuracy, some others methods can be found in the

literature, an example is the method showed in [12]. This

method is able to generate sample traces with O(n) effort with

respect to length. Another example is the approximate method,

described in [13], which has been used in the field of computer

graphics, as wide as for traffic generation.

However these methods usually generate fixed sized blocks

of FGN samples, for example [9], is able to generate accurate

traces with less samples than 5 · 105. This means that size

have to be decided in advance and the full process trace has

to be generated and stored before actual simulation. This limits

our simulation time specially in high speed networks where

we need large traces to simulate even very short times. This

behavior comes from FGN generators working by generating

the desired spectrum of the process and then using Fast

Fourrier Transform to get the actual time-domain process or by

generating farthest samples first and then refining the samples

in between.

Our goal in this work is obtaining a generator to synthesize

FGN on-the-fly with no need for pre-generating large blocks of

samples. This generator is needed to feed simulations of high

speed optical burst or packet switched networks where a large

number long range dependent sources have to be provided for

different inputs. To get this on-the-fly generation an adaptation

of the known Perlin Noise process is proposed. Perlin Noise is

usually used to generate natural looking textures and effects

in computers graphics but can be reinterpreted as an FGN

generator that have not been previously applied, as far as

authors knowledge, to traffic generation. The accuracy of the

algorithm’s adaptation to obtain traces with mean, variance

and Hurst parameter is compared with other FGN generators.

On the other hand FGN generates traffic with a gaussian

marginal distribution and thus may generate instant peaks

larger than channel capacity. The generation methodology to

limit FGN traffic to channel capacity while maintaining target

average and burstiness is also addressed.

The paper is organized as follows. First of all, definitions

and notation used along the paper are presented. Section

II explains the Perlin Noise Traffic Generator and how to

obtain desired parameters. Section III presents the method

to adapt traces to limited capacity channels and section IV

show the results and comparisons. Finally, section IV presents

conclusions.

II. DEFINITIONS AND NOTATION

Perlin Noise process is defined as a sum of several noises

xi(t) called octaves with increasing spectral components. Each

octave is generated from an independent uniform random

process. The base octave (i = 0) is a random independent

noise generated at intervals ∆t. For every t = k∆t a random
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Fig. 1. Example of the Perlin Noise algorithm

independent value is generated with a uniform distribution.

For the points in between t = k∆t the values are obtained

interpolating the previous and next generated value. Interpola-

tion can be linear or any smooth function. Successive octaves

(i = 1...n) are built in the same way with noise taking values

in an increasing number of intermediate points. In octave i
the noise take new values in every k(∆t/f i). Each octave

considered has a different (usually decreasing) amplitude Ai

for the uniform random generation. Amplitude is usually given

by a persistence factor p, being Ai = pi.
Given n independent random noise processes xi(t) interpo-

lated at k∆t
fi . The Perlin noise is obtained as

n(t) =
n−1
∑

i=0

pixi(t) (1)

Figure 1 shows an example with two octaves.

So to summarize, notation:

• n = Number of octaves

• xi = i-th octave. The first octave will be x0 and the last

one xn−1

• p = Persistence

• Ai = Amplitude for each i-th octave

• f = Factor of interpolation

In such a process note that octave k generates fk random

values for every non-interpolated value of the first octave. In

frequency domain octave k has spectral components spreading

to fk times those of first octave. In fact with this generation

each octave xi(t) is approximately a white noise limited to

frequency 2πf

∆t
.

A Perlin Noise with n octaves and interpolating factor f
generates fn−1 samples of the highest frequency octave for

each fresh sample of the first octave. For traffic generation

such a process can be interpreted as providing traffic volume

arriving in fixed size time slots δt given by the generation

time of the high frequency octave. In that case using n octaves

means that first octave generates a noise sample and moves

slowly during fn−1 time slots to its next generated value.

Therefore each octave is contributing to generate a process

with correlation at least reaching fn−1δt time lags.

In this view a Perlin Noise with decaying octave amplitude

is generating a long range dependent process with the decay

of spectral density controlled by p. This is analogous to a

Fractional Gaussian Noise with its decay of power spectral

density controlled by the Hurst parameter H . From this idea

the objective of this work is to generate FGN traces using

Perlin Noise approach instead of RMD.

The usual interpolated factor used for Perlin Noise in

graphic applications is f = 2. In traffic generation it is very

interesting to control the reach of dependence thus larger

values of f could be used to get farther correlations.

To adjust the output of Perlin Noise process notice that the

amplitude of the sum process is given by 2 and the expectation

can be calculated from the expectation of the uniform random

generator which is a uniform noise generator x(t) modulated

by the octave amplitude pi

Amplitudemax =

n−1
∑

i=0

pi =
pn − 1

p− 1
(2)

n̄ = x̄ ∗

n−1
∑

i=0

pi = x̄
pn − 1

p− 1
(3)

III. PERLIN NOISE TRAFFIC GENERATION

This section shows how to use an adapted Perlin Noise

process to obtain FGN traces with the same characteristics

that can be obtained using RMD method. The target FGN

process is defined by mean, variance and Hurst parameter

(µ, σ2, H), given as input arguments to the algorithm. The

FGN trace can be transformed to change mean and variance

without changing self-similar and LRD correlation structure

indicated by H . Therefore the first step to generate FGN with

Perlin Noise is to get a process with desired H by choosing

a persistence value p as well as the number of octaves and

interpolation factor to use. The Hurst parameter depends on

p, the number of octaves n and f which define the frequency

domain representation on the process.

Figure 2 show this H dependence on p, n and f . Note

that for low persistence factors high values of H are obtained.

This can be explained because the process obtained is a sum of

components with power concentrated in increasing areas. The

sum of such octaves with no modification has decaying power

spectrum associated with long range dependence. To get an

independent arrival process, namely H = 0.5, persistence has

to be increased in order to give more weight to the highest

octave that is already a white noise.

The number of octaves n and interpolating factor f to

choose are important because the larger n and f , the larger is

the number of correlated samples obtained.

As we can see in the graph, for example, in order to obtain

a H ≃ 0.7 using 6 octaves we would have to choose a

persistence near p = 1.5.
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Therefore n octaves are generated with uniform and inde-

pendent random generators with x̄i = 0 and weighted with

pi to obtain a Perlin Noise process n0(t). This process has

desired H and mean 0.

The second step is mean and variance adjustment, obtaining

a new process n(t) with desired mean µ and variance σ2.

n(t) = µ+
σ

σ0

n0(t) (4)

Being σ2
0 the variance of n0(t). Note that it is easy to

generate n0(t) with 0 mean but not as easy to get a normalized

process with variance 1. In the next section we derive the

theoretical formula of variance of an n0(t) built as described.

After rescaling the process to get mean and variance, H
parameter keeps unchanged, thus a FGN trace is obtained

with target mean, variance and H and correlation reaching as

far as fn−1. It should be noted that the value of σ0 could

also be obtained from the actual synthesized n0(t) once it has

been generated. However this work’s objective is to generate

continuously the process n(t) with no need to generate fixed

size block traces in advance. The theoretical value of σ0 allows

the generation of samples of n(t) as soon as samples from

n0(t) are generated.

A. Perlin Noise Variance

In order to calculate the variance of n0(t) needed for on-

the-fly variance scaling a theoretical formula for this variance

is derived here. The process n0(t) is generated as a sum

of n independent processes xi(t) with mean E[xi(t)] = 0.

Therefore the sum process will also have E[n0(t)] = 0 and

the variance will be the weighted sum of the variances of

individual octaves.

Var[n0(t)] =
n−1
∑

i=0

Var[pixi(t)] =
n−1
∑

i=0

p2iVar[xi(t)] (5)

The variance of every octave depends on the density func-

tion of the random generator. Every octave is generated from

samples of a uniform random variable x with density function

f(x) in equation 6, taking values in (−1, 1) with 0 mean.

f(x) =

{

1

2
when − 1 ≤ x ≤ 1

0 Otherwise
(6)

In the highest frequency octave every sample is a realization

of the generator but lower frequency octaves have interpolated

points in-between fresh random samples. In octave i there

are k = fn−1−i interpolated samples. Intermediate points in

octave i between a sample with vale a and the next sample

with value b can be written as

a+ (b− a)
i

k
for i = 0...k (7)

The variance of the highest frequency octave xn−1 is

calculated from the density function of the generation

Var[xn−1(t)] =

∫

x2f(x) dx =

∫ 1

−1

x2 1

2
dx =

1

3
(8)

Variance of other octaves can be derived taking into account

that intermediate points are fixed once the values of the random

samples are known. Thus we can write the integral conditioned

to the first sample being a and integrate just over the right

sample of the interval.

Va =

∫ 1

−1

1

k

k
∑

i=1

(

i (x− a)

k
+ a

)2
1

2
dx =

=

(

6 a2 + 2
)

k2 +
(

3− 9 a2
)

k + 3 a2

18 k2

(9)

Being a the left random sample and k the number of

interpolation intervals at octave i, k = fn−1−i. The variance

is obtained by integrating again over the left sample density

function depending just on k for octave i.

V [xi(t)] =

∫ 1

−1

Vaf(a) da =
2 k2 + 1

9 k2
(10)

With the weighted sum of variances of every xi(t) the

variance of n0(t) is obtained using equation 5

V[n0(t)] =

n−1
∑

i=0

p2iV [xi(t)] =

=

∑n−1

i=0

(

2 f2n + f2 i+2
)

p2 i

9 f2n

(11)

This variance can be calculated just from p, n and f thus

allows to rescale n0(t) to an n(t) with the needed mean and

variance. An example of the result of this process is shown in

the figure 3. It has been generated using 6 octaves, factor of

interpolation f = 2 and persistence p = 1.4 in order to obtain
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TABLE I
ANALYSIS OF VALUES OBTAINED THROUGH STANDARDISATION PROCESS

µDesired µObtained σ2

Desired
σ2

Obtained
HDesired HObtained

60,000 60,000.82949 15,000 15,047.568 0.7 0.701
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Fig. 3. n(t) with targets µ = 60, 000, σ2 = 15, 000, H = 0.7 (f = 2,
n = 6, p = 1.4)

a target H ≃ 0.7. In the table I the trace characteristics are

shown. In the following sections we analyze the results of the

process comparing to other FGN generation methods.

IV. GENERATING LIMITED CAPACITY CHANNEL TRAFFIC

In the previous section a method is provided to generate

a FGN with desired mean and variance n(t) by scaling a

Perlin Noise process n0(t). Usually this is interesting to

generate traffic on a given channel with limited capacity C
in order to simulate network behavior. The problem with this

output process is that once mean and variance are chosen the

maximum values of traffic volume per sample time may be

higher than channel capacity limit or even lower than 0. The

FGN process has been generated without those limits in mind.

To fix that, an algorithm is needed that shape the output n(t)
to keep it within limits of channel capacity and over 0. The

algorithm needs to preserve the mean and as much as possible

also variance and Hurst parameter (i.e. correlation structure)

in the capacity limited process ns(t)
In order to keep the mean in the system every time generated

traffic is over capacity limit, the volume exceeding the capacity

is stored to be added to the traffic generated in the next

interval. Therefore in periods where traffic generated is over

capacity limit for extended time, the cumulative stored traffic

is generated after the high traffic epoch ends. This keeps the

same expectation of n̄s(t) = n̄(t) provided that n̄(t) < C.

On the opposite side when the generated traffic volume in an

interval is negative it is also added to the traffic generated in

the next interval thus reducing the generated traffic after that

and keeping the mean of ns(t) equal to that of n(t).
An example is shown in figure 4. It shows the bytes for one

Perlin Noise trace with the parameter values of: H ≃ 0.994,

µ = 0.3 and σ2 ≃ 0.2. It can be seen how a initial process
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Fig. 4. How really works the algorithm to preserve the mean for real system
with capacity showing the acumulative bytes of a Perlin trace

is followed by the shaped version. The shaped one has never

a slope greater that the one given by capacity (C = 1 in this

case) or lower than 0. However due to the build method it has

the same overall growing rate than the original one µ = 0.3.

Shaping the process to obtain desired capacity limit is easy

to do with previous algorithm. The problem is the effect of

that shaping in the output process variance and correlation

structure given by Hurst parameter. It is clear that a process

with limited range can not have arbitrary large variance. In

the section that follows the limits of variance and H that can

be expected from the limited capacity algorithm are shown.

Without loss of generality we normalize the capacity limit as

C = 1 and scale all parameters to fit.

A. Absolute error of Variance

Although the shaping process does not modify the mean of

the output traffic process. Variance may be clearly affected.

The channel limits will not allow variance to grow too high

even if the original process can have arbitrary large variance.

Also note the maximum variance may depend on the mean

value of the generated traffic. A process with mean µ = 0.5
can be easily expected to have σ ≃ 0.25. But the same value

of variance seems too high for a process with µ = 0.01 since

values lower than 0 will be cut.

To evaluate the reasonable values of target µ, σ2 that can

be reasonably reached with the algorithm traces with different

µ,σ2 are generated and the actual variance obtained after

shaping is compared to the target variance. Figure 5 shows

the absolute errors of variance obtained depending on µ and

σ using different Hurst parameters. As can be observed, the

bigger error appear when H ≃ 0.5. Therefore some limits can

be established attending to this errors.
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Figure 6 shows (µ, σ) plane indicating the area where

variance error is less than a given one i.e. 0.1 for H = 0.5.

For the rest of H > 0.5 the variance error is even lower so

the same area is safe to generate for every H value.

The zone of safe generation can be summarized as.

• µ ≤ 0.15 ⇒ σ2
max = 0.150 (σ = 0.35)

• 0.150 < µ ≤ 0.2 ⇒ σ2
max = 0.16 (σ = 0.4)

• 0.2 < µ ≤ 0.7 ⇒ σ2
max = 0.2025 (σ = 0.45)

• 0.7 < µ ≤ 0.9 ⇒ σ2
max = 0.16 (σ = 0.4)

• µ > 0.9 ⇒ σ2
max = 0.1225 (σ = 0.35)

V. COMPARING RMD TO PERLIN NOISE

In this section results for Perlin Noise-based generator are

compared to those obtained using RMD algorithm [13]. This

algorithm has been chosen since it is an approximate method

known by his accuracy to obtain FGN traces in a efficient way.

Maximum channel capacity is normalized to C = 1.

Table II show target values of µ, σ2 and H for an example

of comparison. These values are within safe zone as seen

in previous section and generated trace obtain close actual
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Fig. 7. Analytical Autocorrelation Curve with H=0.7

values as seen on table. A slightly lower variance is expected

because of limited channel capacity that reduce the range of

possible values. H value is obtained with variance-aggregation

estimator. For Perlin Noise generator the number of octaves

used was n = 6 which gave a persistence value p = 1.4 to

achieve a Hurst parameter H ≃ 0.7.

Both methods achieve accurate enough results to target

values with relative errors below 3.5% as seen in the table

III.

TABLE II
COMPARATIVE OF OBTAINED PARAMETERS THROUGH PERLIN NOISE AND

RMD GENERATORS TAKING INTO ACCOUNT LIMITED CAPACITY C = 1

Target Perlin generated RMD generated

µ 0.380 0.380 0.381

σ2 0.096 0.0832 0.0927

H 0.7 0.732 0.724

TABLE III
ABSOLUTE ERRORS OF THE TRACES OBTAINED USING PERLIN NOISE AND

FGN TAKING INTO ACCOUNT LIMITED CAPACITY

Perlin Trace FGN Trace

µ 0% 0.1%

σ2 1.2% 0.33%

H 3.2% 2.4%

In order to check Perlin trace self-similar and long range de-

pendence properties, its autocorrelation function and spectral

density are compared to those of the RMD generated traces.

The autocorrelation of Perlin and RMD generated traces are

plotted in figure 7. Theoretical autocorrelation for FGN is also

plotted. It is given by ρ(k) = 1/2[(k + 1)2H − 2k2H + (k −

1)2H ], [14]. Autocorrelation functions decay slowly with lag

k showing 1/2 < H < 1. Perlin trace deviate from that of

RMD generated but its slope as k → ∞ shows long range

dependence.
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Spectral density for both traces is shown in figure 8. The

best fit to the spectral density of a self-similar process [14]

is also plotted showing similar H values to the ones obtained

with variance-aggregation estimator. Thus spectral density of

the trace generated with Perlin Noise algorithm is that of a

self-similar process with the target H value.

Therefore the algorithm generate traces with correct param-

eters comparable to the ones generated by RMD and it can

be operated to generate a continuous series of values without

fixed size blocks.

VI. CONCLUSION

Self-similar traffic models are commonly used in order to

feed simulations of high speed optical burst or packet switched

networks with real-like traffic. Perhaps the most used of these

is the Fractional Gaussian Noise (FGN) due to its simplicity.

Several methods have been described in the literature to

achieve a compromise between accurate and efficiency in the

generation of FGN traces. However the main disadvantage of

them is that trace length has to be decided in advance. In this

paper it has been shown that an FGN generator can be built as

an adaptation of the well known Perlin Noise process which

has been often used in computer graphics. This adaptation has

been reinterpreted as an FGN modeling network traffic in a

fixed capacity channel.

The main advantage of this Perlin noise based generator is

that it can generate traffic on-the-fly with no need to store the

self-similar traffic trace in advance.

The accuracy of the generator has been compared to that of

Random Midpoint Displacement algorithm, the classic FGN

generator. RMD is known to be fast, simple and efficient.

Perlin noise algorithm has been shown to obtain similar results

generating random traffic with the same parameters than a

RMD generator.

The long range dependency and spectral properties of Perlin

generated traffic have been shown to be equivalent to those of

a process generated with RMD and that they fit theoretical

characteristics of FGN.

Therefore Perlin noise based traffic generator can be used

as a long range dependent traffic source of FGN that can be

generated continuously removing the need of large size trace

generation before simulation.
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