
Collecting Packet Traces at High Speed

Gorka Aguirre Cascallana
Universidad Pública de Navarra

Depto. de Automatica y Computacion
31006 Pamplona, Spain

aguirre.36047@e.unavarra.es

Eduardo Magaña Lizarrondo
Universidad Pública de Navarra

Depto. de Automatica y Computacion
31006 Pamplona, Spain

eduardo.magana@unavarra.es

Abstract— In order to capture packet traces at high speed using a
low-cost platform, we have to optimize the networking stack of a
general purpose operating system. Different techniques are
compared with the final objective of avoiding packet loss. Among
those techniques we will study the performance of NAPI [6] and
PF-RING [9]. Depending on the final application, we should tune
certain parameters accordingly. We also present the advantages
of a multiprocessor platform and the problematic of storing full
packets directly to hard disk.

Keywords: network monitoring, packet capture, interrupt
coalescence, shared memory

I. INTRODUCTION
Broadband technology is changing our world.

Continuously, network infrastructure is supporting more and
more traffic. Network monitoring has to provide information
about these networks so it has to support the latest 1 or 10
gigabit per second speeds. In addition, general purpose
operating systems are not developed with an optimized
networking stack. As a result, a high performance specific
hardware is needed to monitor high speed links.

Nowadays there are different proposals to optimize
networking procedures in order to prepare a network
monitoring node based on a general purpose low-cost PC. This
node will be able, for example, to capture all packets from a
high-speed link and store them in hard disk for further post-
processing. Some of these techniques are as follow:

- Improving operating system architecture: use less
system resources (CPU power), for example
reducing the number of memory copies [1].

- Improving hardware: network interface cards
(NICs) designed specifically for network
monitoring tasks [2]. They usually have bigger
memory buffers, GPS synchronization and even a
programmable processor to make some kind of pre-
processing. However these special NICs area very
expensive and then hard to apply for a low-cost
platform.

There is another bottleneck that must be taken into account
if we use a general purpose PC. PCI bus technology can be
considered as a bottleneck depending on the version we are
working on. Whereas PCI–X technology can manage a full 10
Gbps workload, a normal PCI (32 bit/33 MHz) Ethernet NIC
will be a bottleneck for 1 Gbps traffic [3].

In this paper will be show a comparison of the latest
techniques that could be used to optimize a general purpose
operating system. This will allow an easy way to make a
powerful low-cost traffic monitoring node. Our final objective
will be to prepare a monitoring node in charge of capturing
packets to hard disk for later post-processing.

II. OPTIMIZING NETWORK STACK
As we stated before, nowadays the optimization in

networking procedures is following two guidelines. The first
one is based mainly on interrupt coalescence, polling and
efficiency in copying to the user memory. Whilst, the second
guideline is based on enhancements for latest NICs hardware,
such as: scatter and gather, checksum offload, data alignment,
packet split and jumbo frames. This paper is focused on the
first guideline.

Interrupt coalescence [4] appeared as a solution for the old
networking stacks. These systems launch make a single
interrupt for each packet that was received. Therefore, we can
reach a receiver livelock state without receiving too many
packets. In this state, the CPU is using too much time in
attending interrupts, with the overhead that it involves. Instead
of making an interrupt call for each packet, interrupt
coalescence makes an interrupt for a group of several packets.
In fact, this technique looks at the CPU usage in order to decide
whether it is reaching a livelock state. If the CPU usage by
interrupts overtakes certain threshold, an optimal interrupt rate
is calculated to avoid this state. By doing this, we obtain two
advantages. In one hand, we have low packet latency and, on
the other hand, we have a moderated CPU usage. Latest
Gigabit Ethernet NIC drivers have worked out this feature, and
now their advantages can be obtained by tuning a parameter of
the driver [5].

Another improvement that uses polling has been developed
for Linux systems after 2.4.20 release. This is called Napi [6].
Its purpose is again avoiding a livelock state. The way it works
is similar to interrupt coalescence: whenever a livelock state is
overtaken, Napi disables the interrupts subsystem and it starts
polling packets which are held in the kernel memory. These
packets have been transferred by DMA mechanisms,
transparently for the CPU. Napi makes usage of SoftIrq, which
is a new feature used by SMP (Symmetric MultiProcessor)
systems, useful for example with Intel 4/Xeon processors.

This work was supported by the Spanish Ministry of Education and Science
(Project PINTA TEC2004-06437-C05-03).

 Finally, one of the main problems in packet processing is
the necessity of memory copies. For the entire processing of a
single packet, first of all, it is necessary to copy the packet
from the network card to the kernel memory. This is usually
done by a DMA mechanism, and in most of the cases there are
not further overheads [12]. However, another copy to user
memory is necessary so that a user program can manage this
data. To avoid these packet copies, a technique called zero-
copy was developed [13]. In this case, page mapping moves
data from kernel memory to user just by shared memory. The
size of a memory page must be greater or equal to MTU in
order to able to do the mapping. The packet size can be smaller
than this page size.

III. LOW-COST HIGH-SPEED TRAFFIC GENERATOR
The design of a reliable traffic generator is the first step that

is needed to make a testbed for network monitoring. This
generator must be powerful enough to saturate the receiver
(monitoring node) because we want to test the receiver in
extreme conditions. In other words, we need to generate a huge
amount of packet per second. The idea of using dedicated
hardware to generate traffic is good, but rather expensive.
Another way to obtain this traffic could be done by taking
advantage of switching hardware technology. Generally, a
single Gigabit switch has to support the maximum amount of
packets stated in the gigabit technology standard with
minimum packet size.

The basic idea to implement this generator is replicating a
single traffic source into N free ports of a switch (replication
switch). Then we would obtain the same single traffic N times
in N different wires. Then, we need to add all this traffic in a
single port and this can be done by another switch (adder
switch).

Between the advantages of this configuration we have:

- Maximum speed (as much as gigabit technology
can support).

- Low cost system: two switches, a computer (a
source generator) and a couple of RJ-45 wires.

- We can obtain almost any amount of traffic just by
plugging the proper number of wires. As an
outcome we will have N (wires) times a single
traffic.

And some disadvantages are also present:

- Duplicated traffic is obtained,

- In the receiver side, packets appear in bursts of the
same replicated packet (worst case scenario for
packet monitoring).

- No packets can go back to the traffic source. This
situation would generate a packet loop between
both switches.

The arrangement of the traffic generator is presented in
Fig.1.

Figure 1. High-speed traffic generator

In this case, both switches are working in two different
modes of operation: as a replication switch and as traffic adder
switch.

The replication mode needs that the switch does not learn
the MAC address of the receiver. By doing this, we obtain that
the switch would work as a hub: it will copy input packets from
one input port to all the other ports, because the switch does not
know in which port the destination is attached. The idea of
replace the switch with a real hub does not give good results,
because in the hub we can have packet collisions.

The traffic adder switch needs the receiver attached to one
of its ports and it has to learn the receiver MAC address. In the
other ports we can connect the output ports from the replication
switch. The adder switch will send all the traffic to only the
port where the receiver is attached. Furthermore, this MAC
address must be refreshed every certain minutes so the adder
switch can remember the port of the receiver (the MAC table
has to be refreshed).

The points to be taken into account to carry out this traffic
generator are:

- Switch off any spare network services in both
computers (source and receiver-monitor).

- Use a single traffic generator (program) that doesn’t
need any response from the receiver. For example, a
single UDP generator.

- Configure two subnets in the “generator – switches
–receiver” system in order that the receiver can’t
send any packet to the generator.

- Define the ARP table in both ends, so that neither
ARP replies nor requests are sent to the network.

- Spanning tree protocols must be disabled.

Finally, to make this system work properly we need to
enable flow control in both NICs (in the source’s and in
receiver’s card). In Fig.2 it is shown the consequences of
switching off the flow control parameter.

Figure 2. Theoretical transmission and reception rate

Fig.2 shows the theoretical transmission rate for each
packet size. This is obtained multiplying N (wires) with the
basic traffic source rate. Nevertheless this graphic is misleading
due to the fact that Gigabit technology has its limit depending
on packet size. For example, for a packet size of 1472 bytes the
maximum number of packet per sec that Gigabit can support is
nearly to 85,000 packets, whereas in Fig.2 appears 600,000
packets. The adder switch is not to transmit more than 85,000
packets/sec to the receiver so this is the real transmission rate.
In any case the reception rate shown, is the number of packet
per sec which are copied to kernel memory. The difference
between the sending rate and receiving rate is equal to the
number of packet dropped by the NIC’s hardware.

In the next Fig.3 it is shown the same data but in this case
flow control parameter is on. In this test, transmission rate and
reception rate is nearly the same because with flow control we
are reducing the sending rate. As a conclusion flow control is
necessary in order to obtain reliable results and to avoid
congestion in the adder switch (receiving much more packets
that it is capable to transmit).

IV. NAPI SYSTEM VS INTERRUPT COALESCENCE SYSTEM
In the next comparative, both Napi and Interrupt

Coalescence systems are going to be tested using the low-cost
traffic generator.

Figure 3. Theoretical Transmission and Reception rate

To carry on those tests, two different Linux kernel versions
(2.4.18 and 2.6.9) are going to be used. The 2.4.18 kernel
version is the last version where Napi was not implemented
and therefore Interrupt Coalescence tests can be done. On the
other hand, the second kernel version (2.6.9) has Napi features.

With regard to the receiver, it is composed by a computer
with 2 processors where each of them is a Pentium 1,7 GHz,
and a 3Com 3C996B Gigabit Server NIC [7]. This card works
with a compatible driver known as BCM5700 [8].

The BCM5700 driver has the following parameters that we
will tune in order to obtain the combination which gives best
results:

- rx_std_desc_cnt: number of descriptors in the
kernel memory. It is related to the number of
packet per sec that can be stored in the kernel
memory.

- rx_max_coalesce_frames: this parameter sets the
number of packet per sec that the driver will hold
before a new interrupt call is generated.

- rx_coalesce_ticks: the times (in µs) that a driver
holds on before generating a single interrupt.

- adaptive_coalescence: enables or disables the
interrupt coalescence.

Several experiments were made with different combination

of parameters. The best results for Interrupt Coalescence were
for the next parameters: rx_std_desc_cnt=500 (in order to
store more packets into the kernel memory),
rx_max_coalesce_frames=0 (in order to disable it) and
rx_coalesce_ticks=10 (10 µs that the driver will hold on
before generating an interrupt). In Fig.4 it is shown the
number of packets per second received by the NIC in which
the packet size changes from 64 bytes to 1472 bytes. Fig.5
presents the packets drops profile.

According to Fig.5 a great amount of packets are dropped,
especially for small packet sizes. Even if the network system
is working with less interrupt calls, the copy process to the
user memory consumes CPU resources.

Figure 4. Received and transmitted packets

Figure 5. Packet drops

Besides the SMP feature is disabled whereas in systems
with Napi (Kernel version greater than 2.4.20) SMP feature is
exploited.

The parameters which were chosen for the Napi system to
obtain the best results were: rx_std_desc_cnt=500,
rx_max_coalesce_frames=0, rx_coalesce_ticks = 50 and
adaptive_coalescence=0 (this is switched off by default when
Napi system is detected). The Napi system has a dropped
packet subsystem were any dropped packet is processed and
therefore any dropped packet is counted.

In Fig.6 we can see the number of packet per sec received
using the Napi system. In this case, there are no dropped
packets at kernel level, however packets are dropped at NIC’s
memory level.

In Fig. 7 CPU usage for both systems is shown. Napi uses
more CPU because is using both processors (softirq). However
Interrupt Coalescence is using only one processor, obtaining
50% of total CPU power.

As a conclusion, Napi is a good alternative in resource
consumption and packets processing power.

Figure 6. Received and transmited Packets

Figure 7. CPU usage for both systems

V. THE PF-RING MODULE
The first step for capturing a network packet is storing

packets into the kernel memory. This is a task that generally
DMA does. Whatever, copying from the kernel memory to the
user memory is necessary for an application, in which software
is easier to develop. A system which needs to make two copies
for each packet is really inefficient. However there is a
proposal that, with the proper setting, avoids the second copy
by using shared memory mapping. The module is known as
PF_RING [9]. In addition, a modified libpcap [10] library is
designed by the same author in order to build libpcap
applications with this feature enabled.

The following experiment presents the difference between a
standard built libpcap application, which counts the number of
packet per sec received, and the same application with the
modified libpcap + PF_RING. The difference meanly is that
one makes copies from the kernel memory to the user memory
and the other doesn’t (a shared memory is available for
intercommunication). In Fig.8 it is shown the packets per
second with a standard libpcap and the enhancement with
PF_RING and modified libpcap.

Figure 8. Performance with and without PF_RING

If the final objective is to obtain general network statistics,
there is no need to work with full-sized packets. For the vast
majority of monitoring applications, the headers of a packet
provide enough information. If the idea is storing packets in
hard disk, storing only the headers will reduce the amount of
information to process. The next experiment will obtain the
packet headers and will store them in hard disk.

First of all, there is an issue that must be dealt with. The
data rate of a hard disk can be a bottleneck when storing packet
traces. A standard hard disk can keep up with 20 Mbyte/sec,
SATA-SCSI hard disks are near to 40 – 60 Mbyte/sec [11]. A
great number of small packets (from 64 to 200 bytes) can be
saved as a huge amount of small packets and it does not mean a
high data transfer.

On the other hand, there will be a bottleneck when using a
big packet size. But, if we only store packet headers (about 20-
100 bytes in size), a high data transfer is not necessary. In order
to save packets to hard disk, tcpdump [10] was built with
standard libpcap and modified libpcap + PF_RING. Fig.9
shows the results.

In Fig. 9 hard disk transfer rate is the bottleneck and the
reason why no more packets are saved. Whatever, when saving
packets between 64 to 200 bytes it is shown an improvement
with regard to standard tcpdump (now the hard disk is not the
bottleneck).

In Fig. 10 we only save packet headers for each packet. In
this way, hard disk speed won’t be the bottleneck and therefore
more packets will be processed. We choose 60 bytes for header
length (typical 20 bytes basic IP header, 20 bytes basic TCP
header and 20 bytes for application level). In Fig.10 a huge
improvement is shown if we only store packet headers.

We measured the average packet size over a week for the
Internet access link of the Public University of Navarra and we
obtained 592 bytes. Taking advantage of Fig.10, for a 592
bytes packet size, we would obtain around 5% packet loss at
gigabit speeds.

Figure 9. Packets stored in Hard Disk using PF_RING

Figure 10. Outcome saving Headers and whole packets

VI. CONCLUSIONS
Nowadays, there are many techniques that have improved

the packet capture speed and that can be classified in two types:
improving NICs hardware and improving operating system
architecture. In this paper we have focused in the second one.

The proposed traffic multiplier is a cheap traffic generator
based on combining Gigabit Ethernet switches. The multiplier
can obtain 1 Gbps test traffic without problems, and it would
scale with 10 Gbps switches accordingly.

New Napi features and PF_RING proposal are the best
choices to optimize the packet capture subsystem of a full
monitoring system. On the other hand, packet storage on hard
disk is a typical option for later post-processing. For this case,
packet headers can be saved instead of storing the whole
packets. By doing this, we can increase the packet capturing
rate.

As future work, the capability of generic NICs for only
capturing packet headers will be revised. This would allow
reducing the transfer size between the NIC and kernel memory.

REFERENCES
[1] Jeffrey S. Chase, Andrew J. Gallatin, and Kenneth G. Yocum. “End

System Optimizations for High-Speed TCP”. IEEE Communications,
Special Issue on TCP Performance in Future Networking Environments.
39 (4), pp. 68—74, April 2001.

[2] H.-W. Jin, P. Balaji, C. Yoo, J.-Y. Choi, and D.K. Panda. “Exploiting
NIC Architectural Support for Enhancing IP based Protocols on High
Performance Networks”. Journal of Parallel and Distributed Computing,
65(11):1348--1365, November 2005.

[3] “PCI-SIG developers homepage”.(http://www.pcisig.com/home).
[4] R. Prasad and C. Dovrolis. “Effects of Interrupt Coalescence on

Network Measurements”. In proceedings of Passive and Active
Measurement (PAM) Workshop, April 2004, France.

[5] J. C. Mogul and K. K. Ramakrishnan. “Eliminating receive livelock in
an interrupt-driven kernel”. In Proceedings of the 1996 Usenix
Technical Conference, pages 99--111, 1996.

[6] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In
proceedings of USENIX 2001, pp.165-172, November 2001.

[7] V. Pai, S. Rixner, H. Kim. ”Isolating the Performance Impacts of
Network Interface Cards through Microbenchmarks”. ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), New York, NY, (July, 2004)

[8] “Broadcom Homepage”. (http://www.broadcom.com).
[9] Lucas Deri. “Improving Passive Packet Capture: Beyond Device

Polling”. 15th NMRG, Bremen, Germany, January 2004.
http://www.infosecwriters.com/text_resources/pdf/passive_packet_captu
re.pdf).

[10] “Tcpdump homepage”.(http://www.tcpdump.org).
[11] “SATA Technology Homepage”. (http://www.serialata.org/)
[12] David D. Clark, John Romkey and Howard Salwen, "An Analysis of

TCP Processing Overhead", proc. IEEE Conference on Local Computer
Networks 1988, pp. 284-291

[13] James P.G. Sterbenz and Gurudatta M. Parulkar,"Axon: A Distributed
Communication Architecture for High-Speed Networking", proceedings
of IEEE INFOCOM 1990, pp 415-425

