
Collecting Packet Traces at High
Speed

Universidad Pública de Navarra

Gorka Aguirre Cascallana
Eduardo Magaña Lizarrondo

Date: 28 September 2006

INDEX
• INTRODUCTION
• TECHNICS
• TESTBEDS

– INTERRUPT COALESCENCE
– NAPI
– SHARED MEMORY (PF_RING)

• CONCLUSIONS
• FUTURE WORK

INTRODUCTION

• The purpose of this work is capturing packet
traces at Gigabit Speed

• Low featured CPU
• Linux system
• 2 Gigabit Ethernet NIC test

PROBLEMS
• Operating Systems are not designed for

such a High Speed traffic:
– Operating System is usually interrupt based
– System locks and inestability due to excessive

interrupts handling
– Packet loss
– Packet Transmission Malfunction

TECHNICS
• OPERATING SYSTEM LEVEL:

– Interrupt Mitigation
– Napi
– Shared Memory

• HARDWARE LEVEL:
– Scatter and Gather
– Checksum Offload
– Data Alignment
– Packet fragmentation
– Jumbo Frames

OPERATING SYSTEM LEVEL

• Interrupt Mitigation:

– Reduces the number of interrupts generating a single
interrupt for a cluster of packets

– NIC’s driver parameter tune Interrupt Mitigation
behaviour

– Interrupt Coalescence is an interesting parameter,
which changes automatically the number of interrupts
per packets according to traffic workload

OPERATING SYSTEM LEVEL (II)

• NAPI (Polling)
– NAPI is the new network system for Linux

– Both Interrupt Mitigation and Polling are used

– NAPI begins using Interrupt Mitigation and when
receive livelock is detected Polling is activated

– Interrupt Mitigation can be modified by NIC’s driver
parameters

OPERATING SYSTEM LEVEL (III)

• Shared Memory
– Types of Memory:

• Kernel
• User

– Whenever a packet is received:
• The packet is copied to kernel memory
• It is processed by the protocol stack and sent to socket struct
• The processed packet is copied to user memory so an

application can handle it

– For each packet 2 copies are made
– A shared memory would allow working with 1 copy

HARDWARE LEVEL
• Scatter and Gather: Write and read from non related

(non contiguous) memory addresses

• Checksum Offload: TCP / UDP / IP protocol
Checksums at NIC hardware level

• Data alignment:

• Packet Fragmentation: This functionality is done at NIC
Hardware level

• Jumbo Frames: Packet size > 1500 bytes

TESTBED

• Composed by 2 main part:

– Traffic Generator: Flood the reception
system

– Receiver: High featured CPU with the NIC
that is going to be tested

TESTBED
• 2 network:

– 1 Isolated from
the generator

– 1 which can
handle all CPUs

• Traffic Multiplier

TRAFFIC MULTIPLIER
• Replication Switch :

– Traffic from generator is
sent to all ports

– None of the ports has a
MAC Address Stored

• Adder Switch :
– Reception port needs to

fix the MAC Address to
add the received traffic

– Periodical pings between
Managment and
Reception CPU

– Feedback traffic to
transmition network is
forbidden

TRAFFIC MULTIPLIER

• Generated traffic = N x Transmission traffic
• 1 Gigabit per sec is the Teotherical Maximum

traffic that a switch can afford
• Flow Control Parameter

COMBINATION PARAMETERS
• BCM5700 parameters to change Interrupt Mitigation

behaviour are:
– rx_std_desc_cnt: Configures the number of receive descriptors

on the kernel memory for frames up to 1528 bytes
rx_max_coalesce_frames: Configures the number of received
frames before the NIC generates receive interrupt

– rx_coalesce_ticks: Configures the number of 1 usec ticks before
the NIC generates receive interrupt after receiving a frame

– adaptive_coalesce: Makes adaptive adjustments to the various
interrupt coalescing parameters

– auto_flow_control: Enables or disables autonegotiation of flow
control

TEST I
(INTERRUPT MITIGATION)

• First Combination
– Best choice for this system:

• rx_max_coalesce_frames=0
• rx_coalesce_ticks=10
• rx_std_desc_cnt=500

– Adaptive coalescing gets less received packets, but
it reduces the number of packer losses at kernel
level (losses take place at NIC level).

– If rx_max_coalesce_frames > 0, then in a flood
mode the system is unstable

• Number of packets received per sec with the parameters
above

TEST I (II)
(INTERRUPT MITIGATION)

• Dropped Packets per sec

TEST I (III)
(INTERRUPT MITIGATION)

TEST II (NAPI)

• Best choice for NAPI system:
– The usage of rx_coalesce_ticks parameter

obtains a flat response
• rx_max_coalesce_frames=0
• rx_coalesce_ticks=50
• rx_std_desc_cnt=200

– NAPI system has no drops into kernel
memory but has drops into NIC hardware
memory

TEST II (NAPI) (II)
• Number of packets received per sec with the parameters

above

CPU USAGE COMPARISON
• Napi system CPU Usage is better because the polling

strategy

TEST III (SHARED MEMORY)

• To carry out this test a module called PF_RING
was used:
– New socket allocates a shared buffer memory
– Protocol Stack is avoided -> Interrupt Mitigation
– Works on Libpcap based applications

TEST III (SHARED MEMORY) II
• PF_RING parameters:

– Bucket_len: Specifies the slot size of the buffer
– Num_slots: Number of slots the buffer consists of
– Sample_rate: Sample capabilites on received packets
– Transparent_mode: Received packets are processed by

protocol stack

• Data storage on the Hard Disk:
– Tcpdump (designed with libpcap library) is our choice to store

packets on the hard disk for a later processing
– 2 sorts of storage:

• Entire Packet:
– Hard Disk transfer rate is a bottleneck

• Partial Storage:
– First 60 bytes of each packet will be stored for later statistics

TEST III (PF_RING) IV
• Entire packet storage in the Hard Disk both with and without

PF_RING module

TEST III (PF_RING) V
• Partial and Entire packet storage on the hard disk

CONCLUSIONS
• Interrupt mitigation obtains a high outcome of received packets but it

drops most of them.

• NAPI system obtains a higher outcome. Packets are dropped on the
NIC memory not in the kernel memory. When Polling is activated the
number of interrupts drop off to 0.

• Each packet needs 2 copies for a further processing. The PF_RING
module is used to test a memory shared strategy which needs just 1
copy for each packet to obtain a packet into the user memory. This
strategy is necessary for packet storage via an application.

• Hard Disk data transfer rate is a bottleneck for entire packet data
storage. However, partial packet storage obtains an excelent
outcome without data loss on kernel – user memory.

FUTURE WORK

• PF_RING modification in order to a direct
packet storage in the hard disk. No libpcap
library would be necessary

• Further tests with Phil Wood Libpcap,
which uses Shared Memory

• Packet data compression at memory

Collecting Packet Traces at High
Speed

Universidad Pública de Navarra

Gorka Aguirre Cascallana
Eduardo Magaña Lizarrondo

Date: 28 September 2006

