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Abstract. Video transmission with general-purpose PCs poses a number of requirements that radically differ
from those of high-end dedicated video servers. We analyze the scenario of an Ethernet local area network in which
a number of PCs are transmitting video streams, while other TCP/IP applications are also running concurrently.
Our findings show that since the operating system clock resolution cannot cope with the transmission timing
requirements the following holds: if the video transmission is performed with exact timing accuracy to maintain
a constant rate then CPU load grows to 100%, thus blocking the PC for other user applications; on the other
hand, if transmission is performed in a bursty manner, i.e. with sleep system calls, then CPU load decreases
dramatically but the increased burstiness of the video stream has a negative impact on network performance (for
example, capture effect in the Ethernet). Furthermore, the impact of video transmission over the rest of TCP/IP
applications running on the same network depends heavily on the packet size. We provide an integrated analysis
of operating system and network parameters to achieve video broadcasting while preserving timing requirements
and minimizing the impact on other applications.
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1. Introduction

The increasing demand for multimedia services is spurring packet video transmission in
the wide area and local area networks. Not only high-resolution digital TV is becoming
more popular but also other services such as low to medium-rate packet video services for
tele-conferencing, tele-education and tele-medicine applications. Our case study consists
of a general-purpose PC connected to an Ethernet and acting as a video server. Such sce-
nario is consistent with the technological trend towards increasing PC processing power,
which, together with the availability of cost-effective hardware for coding/decoding video
streams, is making video at the desktop a reality. For instance, a standard PC can effectively
perform MPEG video coding with inexpensive hardware while decoding at the client can
be achieved by software. The data rate for such video coding/decoding schemes, in the
order of Mbps for MPEG1, provides a subjective quality ideally suited for a number of
multimedia applications. On the other hand, most local area networks today provide suffi-
cient bandwidth for multimedia traffic transport. Additionally, the broadcast nature of such
LANs, for example the Ethernet, greatly simplifies the deployment of multimedia services,
which normally require point-to-multipoint connectivity.
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Packet video broadcasting poses significant challenges for both video server and transport
network. However, the challenges imposed by both server and network may differ to a large
extent depending on the broadcasting scenario. Traditionally, the research effort has been
focused on dedicated video server engineering. Indeed, video transmission with dedicated
servers is an area of intensive research, and there is a vast literature concerning admission
control [1], traffic models [8], traffic shaping [4] and other video server engineering aspects
[6]. Since dedicated servers perform video broadcasting to a large number of users, the
challenge is to make efficient use of the available hardware resources (HD, memory, I/O
buses) in order to serve as many users as possible and the same applies to the high-speed
transport network. However, we note a fundamental difference in comparison to our case
study: while high-speed video broadcasting demands dedicated resources, low-rate packet
video consumes shared resources since both server and network are not devoted exclusively
to the video application. Precisely, a distinguishing feature of this paper is the analysis of the
impact of video broadcasting on other concurrent applications running on the same server
and using the same LAN. In fact, multimedia applications spawn a number of concurrent
processes besides raw video servers. Such processes are in charge of signaling aspects,
bulk data transfer for shared document editing, electronic bulletin boards, etc. Thus, the
challenge is to provide video service with a minimal impact on concurrent applications.
Most importantly, we note that the transport network, at least in the access segment, is
also a shared resource, since users are normally attached to a broadcast LAN in most
corporate and academic environments. As a conclusion, we consider a case study in which
the video application is just another process in a shared system, from both server and network
standpoint. Figure 1 shows the dedicated server scenario in comparison to our case study
of shared multimedia terminals.

Figure 1. Dedicated server (a) versus general-purpose PC (b).
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Our research serves to identify the pros and cons of ad-hoc solutions for video broad-
casting. In fact, ad-hoc solutions are common in the software market since multimedia
capabilities are being incorporated massively to current operating systems, with little
changes in the kernel algorithms and system hardware, based on belief that the increased
network bandwidth and CPU power will suffice for video broadcasting at low-medium rates.
In this paper we actually identify fundamental trade-offs that must be specifically addressed
when video broadcasting in a general-purpose system is a requisite.

For example, emerging services such as teleducation require voice, video and data pro-
cessing capabilities from the user terminal. Moreover, the terminal cost should be low in
order to cost-effectively offer service to a large student population. Thus, the PC is the
platform of choice for many teleducation applications [11]. Nevertheless, the trade-offs
presented in this paper clearly indicate that changes must be performed to the actual PC
architecture, that are also examined in the paper. It must be stressed that our research is
targeted to the general-purpose scenario, meaning that the video server will not be devoted
to video broadcasting solely, but also to other processes running concurrently. Furthermore,
communication resources are not reserved in advance but, instead, video traffic will be
sharing the network with IP traffic. This is a common scenario for multimedia and video at
the desktop applications running on a LAN. Furthermore, since an extraordinary increase
in video services demand is foreseen, video applications are expected to play an essen-
tial role in the user personal computer and communication network. The lessons learned
from our analysis help to provide design guidelines for both operating system and network,
that overcome the limitations of current technology and set the pace for well-engineered
systems.

While the scenario depicted in figure 1(a) applies to a number of broadcast networks such
as HFC or wireless networks this paper only considers the Ethernet case, a most popular
LAN (figure 1(b)). Our findings show an interesting and fundamental trade-off: if video
transmission is performed in a non-aggressive manner for the rest of data applications then
CPU load increases to nearly 100%. Thus, the PC is blocked for other user applications and
strictly devoted to the video transmission. If otherwise the transmission clock requirements
are relaxed, thus alleviating the CPU burden at the server, then the increased traffic burstiness
severely affects the rest of TCP/IP applications. However, such effect is not as significant
as the CPU overload produced by the non-aggressive transmission mode.

The rest of the paper is organized as follows: in Section 2, we report on the dynamics
of packet video transmission over the Ethernet. Next, the impact of video transmission
in a general-purpose server architecture is analyzed in Section 3. Section 4 presents two
different transmission modes, accurate and bursty, together with a performance analysis
including empirical results on a real network configuration. Section 5 is devoted to results
and discussion, followed by the conclusions that can be drawn from this study.

2. Broadcasting continuous media over the Ethernet

Ethernets are the most extended local area networks nowadays, their success being based
on the simplicity and ease of hardware implementation, which makes Ethernets straightfor-
ward to deploy and very cost-effective. The Ethernet is based on the well-known CSMA/CD
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protocol, in which all stations gain access to the network in contention. Although sim-
ple and cost-effective, the Ethernet cannot offer deterministic guarantees for bandwidth,
delay or jitter, as opposed to Token Ring or ATM networks. Most importantly, transmis-
sion of bursty streams over the Ethernet may lead to the capture effect, that we describe
next.

The retransmission delay after the occurrence of a collision is determined by the Binary
Exponential Backoff algorithm (BEB). If subsequent transmission attempts from any of
the colliding hosts also result in collisions, the BEB algorithm provides longer retransmis-
sion delays. As the network load increases, collisions become more likely, so the backoff
time also increases rapidly. Consider that two stations collide so that the BEB algorithm
imposes a certain retransmission delay, during which a third host attempts transmission
successfully and takes over the channel for continuous transmission. Should any of the
two colliding stations transmit again after backoff time expiration, the chance of collision
with the third one is very high. However, since the number of consecutive collisions for
the latter is only one then the backoff time given by the BEB algorithm will be lower. As a
result, the third station gains access to the channel again, thus capturing the network in an
unfair manner. After the occurrence of a third collision the third station delays retransmis-
sion for a relatively short time again, since the BEB algorithm reinitializes upon successful
transmission. However, the first and second stations experience longer delays since the
number of consecutive collisions is now three. As a result one of the stations is captur-
ing the network while the others are neglected transmission. Such unfair effect has been
called capture effect [12]. While some methods have been proposed to reduce the capture
effect like the Capture Avoidance BEB (CABEB) [10] and Binary Logarithmic Arbitration
Method (BLAM) [7], the BEB is the current standard. The capture effect is particularly
harmful when there is a server dumping traffic into the network in a continuous manner.
Such host will surely monopolize the network bandwidth, preventing other hosts from
transmission.

We note that since the network load produced by video transmission is high and the server
is likely to transmit in a continuous manner chances are that the rest of applications suffer a
capture effect on the same LAN. In the Ethernet scenario, few papers have already analyzed
the issue of video transmission with background data traffic [2, 5], focusing on audio/video
quality and obtaining the maximum number of video streams that can be simultaneously
transmitted. However, the impact of the video transmission over the rest of generic TCP/UDP
applications has not been studied in detail yet. We note that due to the broadcast nature of
the Ethernet, the usual applications such as WWW, distributed file sharing (NFS), etc. will
surely be affected. Therefore, it is of primary importance to perform video transmission in a
non-aggressive manner, so that the impact over the rest of applications is minimized while
the video timing requirements are preserved.

3. Impact of video service in general-purpose PCs

As noted before, video transmission with general purpose PCs should be provided with
minimal impact over the CPU performance, that is being used for other applications. While
dedicated video servers are usually limited by input/output to hard disk, the case is different
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for a general-purpose PC, in which only a few streams are transmitted together. For instance,
the prototype system under analysis incorporates the MPEG1 standard at different rates
ranging from 1.5 to 6 Mbps. Such video rates allow for compression and decompression
performed by inexpensive hardware, still keeping an acceptable quality for multimedia
applications. Furthermore, we assess that the bottleneck is not in the system hardware (hard
disk, I/O buses), as happens in dedicated video servers. While specialized file systems
are required for the latter, video transmission at few Mbps does not require input/output
capabilities other than those provided by standard IDE disks and PCI I/O buses.

The design challenges in our scenario come from the fact that the video transmission
should not take over the system CPU, so that the PC is not blocked for the rest of the
applications, while hard disk and I/O to video card and network interfaces card are of less
concern in this type of video servers. We claim that large CPU resources are consumed in
the video server mainly due to the timing mismatch between operating system clock and
network clock. In order to fully understand this phenomenon, let us provide a quick glimpse
on operating system timing issues.

3.1. Operating system timing issues

Process scheduling is a most important issue for multitask operating systems. In an overly
simplistic view, a process can be either in the sleep state or in the active state. A kernel part
called the scheduler is in charge of determining which process should enter the CPU or be
removed from CPU. Such transitions to the active state from the sleep state and vice versa
take place at regular instants which are determined by the operating system clock.1 The OS
clock provides the system heartbeat, so that the kernel is woken up at regular time intervals
in order to perform system housekeeping, namely determine which processes should be run
in the next time slice and other tasks such as file system maintenance and so on. Note that
the kernel tasks consume CPU resources since a context switching is necessary from the
active process to the kernel processes and back either to the active process or to another
process awaiting for service. We stress the difference between operating system clock and
hardware clock, which is the physical clock that drives the CPU program execution. Usually,
the OS clock granularity is in the order of millions of hardware clock ticks (for instance
0.01 seconds or approximately 4.5 M hardware clock cycles in a 450 MHz Pentium III with
Linux operating system). Note that such OS clock granularity cannot be made arbitrarily
small since otherwise the most part of CPU time would be devoted to kernel tasks. On the
other hand, note that a user process cannot be put to sleep for less than an OS clock tick.
Such procedure is performed with the sleep() system call.

3.2. Network clock and OS clock

Since video is a delay and jitter sensitive service it would be desirable to transmit and receive
data with strict timing. However, since video packets are encapsulated in UDP/IP protocols
and transmitted through the PC network interface card timing is performed by the CPU.
Since OS clock granularity is far too coarse for data transmission (usually 10 ms) there is
no chance to provide a constant rate stream by putting the video server to sleep between
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consecutive packet transmissions. Alternatively, accurate timing can be provided by means
of active waiting on the hardware clock. Namely, the video server reads the value of the
hardware clock continuously, thus always remaining in the active state. As a result, the
video transmission server, which is one among the many applications run in the PC, takes
over the CPU, leading to starvation of the rest of the applications and noticeable slowdown
in overall PC performance.

We note that the timing adaptation between the system clock and the network clock is
of fundamental importance. A general-purpose operating system provides a system clock
whose granularity allows for task scheduling in the kernel, but is not suitable for data trans-
mission. Since the video server will necessarily use the socket layer for communications,
normally over UDP—or the DLPI link layer services—the transmission clock is provided
by the operating system. Instead of providing strict timing, i.e. identical packet inter-arrival
times, we may allow some jitter so the video server can be put to sleep. Such procedure
necessarily leads to bursty transmission in the Ethernet but provides considerable savings
in CPU load.

4. Burstiness—CPU load trade-off analysis

If the OS clock cycle duration exceeds the packet interarrival time it turns out that the
only way to achieve constant rate transmission is through active waiting. Alternatively, we
may transmit several packets in a burst per OS clock cycle. Thus, we note that we may use
different video transmission modes that balance CPU load and network impact. Specifically,
we consider the following transmission modes:

– Accurate mode: packets are released with the most precise timing that the CPU can
deliver. In order to do so, the video server is performing continuous polling over the
hardware clock in order to transmit packets right on time. As a result, the processing of
system calls that results from polling increases CPU utilization severely, while the traffic
stream is constant rate. The accurate mode algorithm in pseudo-code is:

to = packet interarrival time
tIRQ = OS clock cycle time
while (1)

{
tnow=read(hardware clock)
if ( to > tIRQ )

sleep(floor(to/tIRQ)*tIRQ) /* Process is put to
sleep. CPU load 0% */

while ( read(hardware clock)-tnow < to )
{
/* Active waiting loop.
CPU load 100% */
}

transmit(packet)
}
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The read(hardware clock) is normally performed using the UNIX system call gettime-
ofday() while transmit(packet) uses the socket library call sendto. Since read(hardware
clock) is executed continuously the accurate mode leads to 100% CPU load.

– Bursty mode: the video server is put to sleep between subsequent packet transmissions
in order to save CPU power. Since the sleep() or nanosleep() system call both have
coarse resolution (in the other of 10 milliseconds) then transmission is necessarily bursty
in other to meet the video stream rate requirements. Indeed, we note that the sleep()
system call can only be performed if the packet interarrival time is larger than the OS
clock cycle, which is normally infeasible. For example, packet interarrival time is in the
order of milliseconds with MTU size packets (1500 bytes) for a case with eight low-
rate 1.5 Mbps streams, one order of magnitude below OS clock cycle granularity. The
pseudo-code for the inaccurate mode algorithm is:

N = number of packets per OS clock cycle
tIRQ = OS clock cycle time
while (1)

{
for(i=1 to N)

transmit(packet)
tnow=read(hardware clock)
sleep(tIRQ-tnow) /* Process is put to sleep.

CPU load 0% */
}

The number of packets per cycle can be calculated easily if we take into account that
the video data rate should be met by both transmission modes. For the accurate mode such
data rate simply equals the specified rate 1/t0 while for the bursty mode the data rate equals
N/tIRQ. Since both have to be equal we have N = tIRQ/t0. Figure 2 shows the packet
transmission dynamics in both accurate and bursty mode.

It seems appealing at this point to simply increase OS clock resolution in order to minimize
CPU load while meeting transmission clock requirements. However, a number of empirical
studies clearly indicate that increasing OS clock granularity results in a severe performance
penalty due to CPU thrashing [3]. Since the kernel wakes up once per OS clock cycle
processes are moved in and out from CPU, resulting in a considerable context switching
overhead. Since having OS clock resolution in the network clock timescale is unfeasible we
note that bursty transmission becomes necessary. In the next section, we perform extensive
evaluation of bursty mode impact on CPU performance.

4.1. Analysis of CPU impact with bursty transmission mode

Recall that a video server in bursty transmission mode enters CPU once per OS clock cycle
in order to transmit a number of packets (N ) according to the video rate. The performance
analysis presented in this section yields the following results: CPU load is minimally affected
by the context switch produced by the video server once per OS cycle and not at all by the
number of packets transmitted by cycle. Therefore, the bursty mode can be used for a wide
range of video rates with minimal impact on CPU performance.
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Figure 2. Accurate (a) and bursty (b) transmission modes.

We set up a simple video server running on a Linux 450 Mhz Pentium III machine
attached to a 100 Mbps Ethernet, in which the number of packets transmitted per burst (N )
is a parameter. We analyze CPU impact versus number of packets per burst. The results
are shown in figure 3 which presents the number of context switches per OS cycle versus
number of packets (MTU size) transmitted per burst. We note that the number of context
switches per OS cycle is approximately 0.5 if the system is idle. Thus, for small size
bursts only one context switch per OS cycle is measured. However, we note an increase
to two and three context switches per OS cycle as we increase the number of packets
heavily.

In order to explain figure 3 we first need to provide some insight into the dynam-
ics of packet transmission in a general-purpose kernel. We note that after the execution
of the transmit(packet) system call transmission does not take place immediately. Ac-
tually packets are queued for transmission in RAM space. Then, the network interface
card (NIC) perform direct memory access to download packets to NIC hardware memory
and packets are finally delivered to the network. Such direct memory access download
has no impact on CPU performance. Since transmit(packet) is called N times per cycle
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Figure 3. Number of context switches per OS cycle versus packets per burst.

according to the bursty mode algorithm packets are queued in memory so rapidly that
the NIC is unable to cope with such rate. Consequently, overflow may occur, since the
allocated memory space for packet transmission is limited. Before buffer overflow ac-
tually happens, thus leading to packet loss prior to transmission, the operating system
interrupts the video server process in order to let the NIC driver release packets from the
transmission queue. Such interrupt leads to an increase of one context switch as noted in
figure 3.

In order to verify such hypothesis we perform the same experiment with different trans-
mission buffer sizes. Fortunately, transmission buffer size is a tunable OS parameter. 2 The
results are shown in figure 4, which presents number of context switches per OS cycle
versus number of bytes per burst for different transmission buffer sizes. We clearly observe
that the number of context switches decreases dramatically as the transmission buffer size
increases. Most interestingly, we observe an increase in one context switch precisely in
multiples of the buffer size, indicating that context switches are due to buffer overflow
(while the first increase takes place exactly at the socket buffer size, further increases may
happen at smaller steps because the OS unblocks the sending process when the buffer fill
level has significantly dropped).

Finally, CPU impact versus number of packets per burst is presented in figure 5. Our
video server is delivering a lengthy video clip in order to achieve enough significance for
the CPU time and total execution time measurements, which are performed at different rates
(packets per burst). We note that the CPU impact is clearly negligible since CPU utilization
factor is less than 1% in all cases.

The results presented in this section show that bursty mode allows for high video rates with
minimal impact on CPU. Indeed, video rates in the order of tens of Mbps can be provided
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Figure 4. Number of context switches per OS cycle versus bytes per burst.

Figure 5. CPU load versus packets per burst.

through adequate tuning of OS parameters (transmission buffer size). In the client side, the
jitter introduced by bursty transmission can be removed by means of playback buffering. The
analysis presented in this section provides a clear picture of video transmission dynamics
in a general-purpose PC. In the following section we turn our attention to the network
dynamics, focusing on the specific case of an Ethernet.
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5. Impact of bursty and accurate mode on network performance

In order to evaluate the strengths and drawbacks of both bursty and accurate mode from
the network standpoint we set up an experimental scenario consisting of: (i) video server
and (ii) video client, both implemented on a general purpose Linux PC, (iii) applications
servers and (iv) application clients. On the other hand, a network monitoring tool (snif-
fer) is in charge of taking traffic traces. Experiments are performed in a 10 Mbps Eth-
ernet since sniffer resolution does not allow for higher speeds. The application servers
and clients serve to the purpose of assessing the impact of video transmission over a
number of generic Internet applications. We distinguish between two types of reference
applications:

– Transactional applications: like WWW, FTP, email or distributed file system transactions,
that use TCP as a transport protocol. Such applications are normally characterized by a
download from the server to the client, and usually produce relatively big size packets.
The quality of service is measured by the transaction latency. In our experiments, the
reference TCP application is sending 100 times the same 10 Kbytes size file from server
to client. A number of 75 experiments are performed in order to achieve an acceptable
confidence interval. We note that the 10 Kbytes are segmented into smaller size packets by
lower protocol levels in order not to exceed the Ethernet MTU which is 1514 bytes (plus
4 preamble bytes). In any case, packet sizes are not under the control of the application
but the TCP protocol agent.

– Interactive applications: like Voice over IP, that uses UDP as a transport protocol. Such
applications are delay-sensitive and usually produce small packets. The quality of service
is measured by the packet delay. In our case study, the reference UDP application is based
on the echo service [9]. A 100 bytes packet is sent from the client to the server which in
turn sends another packet immediately after upon server reply. By doing so, we emulate
an interactive service. The application performs 100 packet transmissions and the whole
experiment is repeated 75 times to achieve an acceptable confidence interval. Average
measurements are taken in order to compensate for possible inaccuracies in the sniffer
clock resolution.

Figure 6 presents the experimental setup with both video server and client and application
servers and clients, together with the network monitoring tool.

The experiment dynamics are as follows: the video server is run in accurate and bursty
mode, while the reference TCP and UDP applications run concurrently in the application
servers. We take into account the following network parameters per experiment:

– Video packet sizes: small packet sizes make packet transmissions more frequent while
on the other hand the buffer requirements at the client will be lower and also the protocol
efficiency.

– Video rate: clearly, a growing share of Ethernet bandwidth is consumed as the video rate
increases.
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Figure 6. Experimental set-up.

As expected, CPU load reaches 100% in accurate mode while bursty mode allows for
video transmission with CPU load under 5%. Furthermore, CPU load is unaffected by
number of packets per OS cycle, i.e. video rate.

5.1. Impact of video service on UDP interactive applications

Figure 7 shows the average and 10–90% percentile UDP packet delay versus video packet
size with video rates of 1.5 Mbps and a video server running in accurate and bursty mode.
First, we observe an striking dependence with video packet size, being the delay minimums
placed in packet sizes which are exact multiples of the Ethernet MTU, while peaks cor-
respond to packet sizes slightly larger than the MTU size. This is simply because there is
no fragmentation when packet sizes correspond to the MTU size. If the packet size is just
above 1514 bytes segmentation into two packets becomes necessary, the second one with a
very short payload.

Secondly, we observe that in the accurate mode both delay and jitter are smaller. However,
figure 8 shows the impact in the CPU load for both accurate and bursty mode following
the event chart in Table 1. The results show that while delay and jitter are both smaller in
the accurate mode CPU load increases significantly. This trade-off is due to the mismatch

Table 1. Video server event chart.

Time Event

15 s Server on

20 s Video rate 1.5 Mbps

38 s Video rate 3 Mbps

62 s Video rate 4.5 Mbps

84 s Video rate 3 Mbps

102 s Video rate 1.5 Mbps

152 s End of video transmission

155 s Server off
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Figure 7. UDP application delay, three video clients and (a) accurate mode, (b) bursty mode video server.
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Figure 8. CPU load with 1514 bytes packet size (a) accurate mode, and (b) bursty mode.
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Figure 9. Average UDP application delay with increasing video rate.

between the OS clock and network clock, as noted in the previous section. On the other
hand, while CPU load remains very low in bursty mode we note a number of peaks than
can be explained with the event chart in Table 1. We run the video server at 1.5 Mbps and
increase video rate to 3 Mbps and 4.5 Mbps at the time instants that precisely correspond to
CPU load peaks. In steady-state operation we note that CPU load is independent of video
rate, as noted in the previous section.

Figure 9 shows the average delay curves for both bursty and accurate mode but with
variable video rate (1.5, 3 and 4.5 Mbps). As expected, the more video rate the more delay,
since network load and collisions increase. On the other hand we also note the video packet
size effect, which is more significant as the rate increases.

5.2. Impact of video service on TCP transactional applications

The TCP application results are quite similar, as shown in figure 10, which presents TCP
transaction latency versus packet size for 1.5, 3 and 4.5 Mbps video rates. However, we
note that the TCP case is not as homogeneous as the UDP case. While the curve shape
is nearly the same we observe several irregularities in the graphs. Again, the video server
in accurate mode gives better results than the bursty mode, especially as the video rate
increases.

The curves are more irregular than in the UDP case due to the dynamics of the TCP
protocol. The occurrence of repeated collisions makes the congestion control mechanism
react, so that each particular TCP connection has a different and highly unpredictable
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Figure 10. TCP application delay (average, 10–90% percentile) for different video rates.

transmission pattern. Even though the shape of the curves is the same, with minimums
located at multiples of the MTU size, we note a strong impact of the bursty mode in
comparison to the UDP case. Considering IP packet sizes of 1,500 bytes, which provide
minimum delay, there is a 70 ms difference between bursty and accurate mode.

5.3. Discussion

In order to analyze the above results we plot the time series of UDP packet arrivals in the
Ethernet in figure 11 . A traffic sniffer performs high resolution captures. Packet arrivals in
such captures are presented as triangles, where the first vertex position in the time axis is
the time instant in which the first bit of the packet is put on the wire and the second vertex
represents the instant in which the last bit of the packet leaves the wire. The triangle height
represents the packet size, which is necessarily below 1514 bytes (Ethernet MTU). Figure 11
shows the packet arrival time series for the interactive applications experiments (UDP), being
the server in accurate mode. From figure 11, we observe large packets corresponding to
the accurate video server and small packets corresponding to the UDP application. Figure
11(a) shows video packet sizes which are close to the maximum size, 1514 bytes and
figure 11(b) shows the segmentation effect when the IP video packet size is slightly larger
than the Ethernet MTU, thus producing a second small packet right after the first large
packet.
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Figure 11. UDP application and video packets for an accurate video server with packet size of (a) 1514 bytes
and (b) 1520 bytes.
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Figure 12. UDP application and video packets for a bursty video server with packet size of 1514 bytes.

Both figures show that the UDP application tends to occupy the gap between video
packets. But in 11(b), there is a high chance of collision due to the second small video
packet resulting from segmentation in the video server. As a result, we observe the rather
striking performance dependence with packet size for the UDP application, shown in figures
7 and 9 in the vicinity of the MTU size.

In figure 12, we show the packet transmission dynamics for the bursty video server and
UDP interactive application. We note that the burstiness generated by the video server
affects performance, since the server takes over the network capacity, leading to a capture
effect.

Finally, figure 13 shows traces obtained with an accurate server and transactional appli-
cation (TCP), showing data packets appearing between video server packets and small TCP
ACKs. We observe three TCP successive packets that make the video server accumulate
packets that will be sent later. Thus, as soon as the video server is able to transmit, it will
be sending a large burst of outstanding packets. We note that the TCP socket layer does not
allow the application to determine the time instant a packet is put on the wire, nor the size,
since a pure stream service is provided. The maximum packet size will be sought by the
TCP in order to maximize efficiency, as shown in figures 13(a) and 13(b) which presents
packet sizes in the vicinity of the Ethernet MTU. In figure 13(b) the appearance of a second
small video packet fragment whose size is bigger than the MTU increases the chances of
collision. Consequently, the TCP is significantly affected by the video transmission for
a twofold reason: first the TCP transmission is more bursty due to the window protocol
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Figure 13. TCP application and video packets for an accurate video server with packet size of (a) 1514 bytes
and (b) 1520 bytes.
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dynamics. Secondly, the packet sizes are normally bigger and are not under the application
control.

5.4. Enhancing general-purpose systems with packet video broadcasting capabilities

The previous sections show that an accurate transmission mode is crucial for network
performance, since the impact of video transmission on the rest of TCP/IP application is
minimized. However, the impact on CPU load is significant since accurate transmission can
only be performed through active waiting. Thus, there is a fundamental trade-off between
CPU impact and network impact. As a first approximation, the OS clock granularity may
be increased, but at the cost of inefficiency due to the larger context switching rate-CPU
thrashing [4].

Concerning the local area network, resource reservation capabilities are desirable, in
order for the video traffic not to interfere with the rest of applications. Such resource
reservation features may be provided by the MAC protocol. For instance, the Fair Dual
Distributed Queue (FDDQ) [12] is a distributed protocol that provides resource reservation
over the Ethernet. In the event of a collision a number of reservation minislots are provided
in order for real-time stations to issue bandwidth requests. Nevertheless, the suitability of
resource reservation protocols in the LAN environment can be questioned since the most
part of the traffic is inherently bursty and requires best effort service with low access times.
Precisely, we have shown that a random access MAC (CSMA/CD) is compatible with video
broadcasting if accurate transmission is performed (see Section 2).

In order to meet both the network and CPU constraints we suggest the use of a separate
processor in the NIC, so that the main CPU is offloaded from the task of transmission
timing. The NIC CPU acts as a transmission clock for the video traffic, thus releasing
the mother CPU from this task. A number of commercial ATM network interface cards
incorporate a processor in order to perform traffic shaping and, specially, AAL segmentation
and reassembly. Slight modifications at the BSD socket layer and packet driver would also
be required, in order to implement “accurate transmission sockets”. The socket library
implementation would then mark the packets arriving from such sockets as demanding
accurate transmission, and, consequently, the packets would be delivered with deterministic
packet interarrival times by the NIC. Furthermore, packets could be released from the kernel
to the NIC in bursty mode, since transmission timing is not under the OS responsibility
anymore. At each OS cycle, the socket buffer could be transferred to the NIC buffer, in
order for the NIC processor to take care of transmission timing. The fact that the number of
packets transferred per OS cycle is not a limiting factor (see Section 4.1, figure 5) ensures
low CPU load and good video transmission capabilities at high rates.

Figure 14 shows a block diagram of the proposed solution. A modification at the socket
layer is necessary in order to distinguish the packets that require accurate transmission mode
from those that require best-effort service. As a possible implementation alternative, a new
socket type could be provided. Current UDP applications use the socket3 system call in
order to obtain an I/O descriptor for kernel communication services. For UDP applications
(best effort), the socket type is SOCK DGRAM. For video applications, a new socket type
(SOCK TIMING) would be required in order to store the video packets in separate buffers
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Figure 14. Block diagram of the proposed solution using dedicated CPU in NIC.

(mbufs) at the kernel UDP/IP agent. Then, video packets could be relayed to the NIC
through the packet driver access point for accurate transmission service. Note that nearly
no changes are required at the UDP/IP layers, since video and best-effort packets receive
the same treatment, except for the fact that separate buffers are allocated for each type of
traffic.

On the other hand, the packet driver should provide two service classes: “accurate trans-
mission service” for video packets and “best effort service” for the rest of UDP and TCP
traffic. Other than separate buffering for both services no additional changes would be re-
quired. The NIC service interrupt routine would be in charge of downloading the buffer
contents to the NIC (once per OS cycle), as happens in current PCs. Both video packets
and best effort packets would be sent in bursts to the NIC, at nearly no CPU cost. Then,
specific hardware, either a CPU or a Programmable Logic Device (PLD), would be devoted
to accurate transmission of video packets. On the other hand, such dedicated hardware
would also be required to interleave best-effort packets in the constant rate video stream.
The analysis presented in this paper shows that an accurate transmission mode allows to
optimize network usage since the rest of applications delivering traffic to the same LAN
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suffer a lesser impact. However, such accurate transmission cannot be achieved if the OS
is not released from the burden of transmission timing, due to the mismatch between OS
clock and network clock granularity, that leads to active waiting. We believe that the lat-
ter problem can be circumvented with the use of the protocol stack and NIC architecture
shown in figure 14. To the best of our knowledge, neither commercial NICs nor research
prototypes have been designed with such an architecture, and a significant benefit could be
obtained.

6. Conclusions

As a conclusion, our findings show that an accurate transmission mode produces less bursti-
ness in the Ethernet, that translates in a reduced impact for the rest of applications. However,
the CPU load increases significantly since the only way to cope with the network timing is
through active waiting. A bursty transmission mode permits low CPU utilization while the
impact in the network is not that significant. On the other hand, we note a strong perfor-
mance dependence with packet size. In order to maintain the video rate it becomes necessary
to control not only the timing but the packet size so that the rest of applications are not
severely affected. Interestingly, we note that packet sizes equal to Ethernet MTU multiples
not only minimize the impact over the rest of applications but also maximize bandwidth
efficiency. Furthermore, TCP applications will suffer a more severe impact, since the traffic
burstiness and packet size are not under the application control but under TCP control,
which will produce bursts due to the window flow and congestion control mechanisms and
large packet sizes in order to maximize efficiency.

In order to transform future PCs into real multimedia terminals the design of the general-
purpose operating system should incorporate video and audio transmission capabilities.
The primary concern is to provide agile process swapping so that the timing requirements
imposed by the network are not realized through active waiting. While we are witnessing
an extraordinary increase in CPU processing power the network bandwidth is growing
at an even faster pace. Our findings show that the adaptation between OS and network
is of fundamental importance to facilitate the deployment of multimedia applications. A
departure from the traditional protocol engineering paradigm, that considers the network
as an isolated subsystem from the host, has an starting point in the present work and is the
subject of our future work.

Notes

1. Additionally, such transitions can be triggered by hardware or software interrupts.
2. The BSD socket library provides the setsockopt function to do so.
3. int socket(int family, int type, int protocol).

References

1. J. Bolot and T. Turletti, “Experience with control mechanisms for packet video in the internet,” ACM Computer
Communication Review, 1997.



PACKET VIDEO BROADCASTING WITH GENERAL-PURPOSE OS 27

2. I. Dalgic, W. Cien, and F. Tobagi, “Evaluation of 10Base-T and 100Base-T Ethernets carrying video, audio
and data traffic,” in Proceedings of IEEE INFOCOM’94, Toronto, Canada, 1994.

3. B. Goodheart and J. Cox, The Magic Garden Explained: The Internals of UNIX System V Release 4, An
Open System Design, Prentice Hall, 1994.

4. S. Gringeri, K. Shuaib, and R. Egorov, “Traffic shaping, bandwidth allocation, and quality assessment for
MPEG video distribution over broadband networks,” IEEE Network, 1998.

5. S. Guota and C. Williamson, “An experimental study of video traffic on an Ethernet local area network,” in
Proceedings of GLOBECOM’94, San Francisco, CA, 1994.

6. D. Meliksetin, F. Feng-Kuo Yu, and C.R. Chen, “Methodologies for designing video servers,” IEEE Transac-
tions on Multimedia, Vol. 2, No. (1), 2000.

7. M. Molle and K. Christensen, “The effects of controlling capture on multimedia traffic for shared Ethernet
systems,” Journal of Telecommunications Systems, Vol. 9, Nos. (3/4), 1998.

8. J. Ni, T. Yang, and D. Tsang, “Source modelling, queueing analysis, and bandwidth allocation for VBR
MPEG-2 video traffic in ATM networks,” IEE Proceedings in Communications, Vol. 143, No. (4), 1996.

9. J. Postel, “Echo protocol,” Internet Standard STD0020-RFC862, 1983.
10. K.K. Ramakrishnan and H. Yang, “The Ethernet capture effect: Analysis and solution,” in Proceedings of

19th Conference on Local Computer Networks, Minneapolis Minn, 1994, pp. 228–240.
11. L. Vidaller and J. Aracil, “The ETSIT teleeducation system,” in Proceedings of DELTA Telematics Conference

94, Dusseldorf, Germany, 1994.
12. B. Whetten, S. Steinberg, and D. Ferrari, “The packet starvation effect in CSMA/CD LANs and solution,” in

Proceedings of IEEE Local Computer Networks, Minneapolis, MN, 1994.

Eduardo Magaña received his M.Sc. and Ph.D. degrees in Telecommunications Engineering from Public Uni-
versity of Navarra, Pamplona, Spain, in 1998 and 2001 respectively. He is an assistant lecturer at Public University
of Navarra. During 2002 he is a postdoctoral visiting research fellow at the Department of Electrical Engineering
and Computer Science, University of California, Berkeley. His main research interests are network monitoring,
multimedia services and wireless networks.

Javier Aracil received the M.Sc. and Ph.D. degrees (Honors) from Technical University of Madrid in 1993 and
1995, both in Telecommunications Engineering. In 1995 he was awarded with a Fulbright scholarship and was
appointed as a Postdoctoral Researcher of the Department of Electrical Engineering and Computer Sciences,
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