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Abstract

This paper presents a novel protocol-adaptive monitoring tree (PAM-Tree) algorithm. PAM-Tree is a filtering al-

gorithm that fulfills the needs of a general-purpose traffic monitoring system. PAM-Tree is aimed at overcoming the

inefficiencies of existing stream-oriented traffic probes in traffic monitoring scenarios where large numbers of filters

change dynamically. Both analytical and experimental performance evaluations show that PAM-Tree has a great

potential to be an efficient filtering engine for high-speed loss-less monitoring systems.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

As network capacity continues to increase

worldwide, with thousands of hosts and a wide
variety of protocols and services, traffic monitor-

ing has become an increasingly challenging task.

Traffic monitoring systems [18] are composed of

probes, which are hardware or software devices in

charge of measuring traffic from a given network

segment, as shown in Fig. 1. Such probes deliver

reports and statistics to the measurement console.

While traffic parameters are specified in network

monitoring standards such as RMONv2 [24], there
is very little in the literature on probe architecture,

implementation and performance evaluation. As a

result, performance tests on commercially avail-

able RMON probes are likely to give false traffic

measurements, since significant packet losses are

likely to occur [21, Chapter 10.10; 22]. The reason

is that traffic probes are unable to keep track of

thousands of filters and associated parameters in
high load situations. In fact, traffic probes impose

a number of requirements that are distinct from

other systems requiring packet filtering capabili-

ties, such as routers, operating systems, firewalls

and traffic analysis applications (tcpdump [9], for
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example). As a result, current packet filtering

techniques cannot be successfully ported to the

specific scenario of traffic monitoring systems.

The paper is organized as follows: the require-

ments imposed by traffic monitoring systems are

analyzed in Section 1.1; the state of the art in

packet filters and classifiers is discussed in Section
1.2; and the paper contributions are presented in

Section 1.3. Section 2 is devoted to an in-depth

description of the PAM-Tree (protocol-adaptive

monitoring tree) algorithm. Section 3 presents

analytical and experimental performance evalua-

tions of both PAM-Tree and packet filter. Section

4 describes a PAM-Tree based monitoring system

(MONET) and, finally, we present our conclusions
in Section 5.

1.1. Traffic monitoring system requirements

Traffic monitoring systems can provide param-

eters on a wide variety of scales, from information

as coarse as the total network load, to data as

detailed as the WWW traffic between a pair of
hosts. However, in every case, the parameter value

needs to be updated as new packets appear in the

network segment. Because of increasing network

traffic volume, along with the large number of

parameters supported by traffic probes, it turns

out that the filtering engine is the key component

of the monitoring system, and can possibly be-

come a bottleneck. It is important to state that
updating traffic parameters is the sole purpose of a

traffic monitoring system. That fact alone makes it

different from other systems with packet filtering

capabilities, since it does not require a packet

stream. In fact, traffic monitoring systems call for

a departure from the stream-oriented paradigm,

for a number of reasons.

First, a single packet may trigger the update of

several parameters (a packet contributes to the total

network load but may also contribute to the load
between a pair of hosts). Traffic filtering algorithms

usually check a single value in a certain header field.

On the other hand, it is likely that filters be required

to discriminate a range of values, and not a single

one. Furthermore, not only may several parameters

be updated with the same packet stream, but a

single parameter may be affected by many packet

streams. Therefore, an optimized packet filtering
technique does not suffice for traffic monitoring,

which demands an integrated solution that ar-

ranges filters and parameters jointly.

Second, traffic monitoring systems are required

to keep track of and dynamically update a very

large number of filters. Frequently, automatic filter

insertion must be performed if network load grows

beyond a given threshold, so that a full picture of
network activity can be obtained at that time. In

fact, the information provided by the monitoring

system at congested times is important in detecting

network weak spots. Since data traffic is inherently

bursty, congestion onset may occur quickly, and

response time is crucial to capturing detailed traffic

statistics. While this is not an issue in cases where a

single parameter is requested (e.g., the amount of
traffic to a certain destination port), the same does

not apply to other cases. For example, there may

be a request for a traffic matrix identifying bulk

traffic users. In a worst case scenario, a traffic

matrix of 20 hosts implies allocating 400 filters in a

very short time. We could provide additional ex-

amples in which response time is critical to main-

taining valuable management information, such as
the number of bytes per newly arrived TCP con-

nections to a certain destination port, and so on.

Third, the traffic probe cannot be stopped for

filter insertion since, in that case, packets for which

the filter was setup could be lost. This is one of the

most important distinguishing features of traffic

monitoring systems.

At this point, the fact that PAM-Tree is not a
generic packet filter or packet classifier must be

stressed. PAM-Tree is a filtering algorithm that

Fig. 1. Traffic measurement probes.
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fulfills the needs of a general-purpose traffic

monitoring system. It is not intended to replace

current implementations of packet filters, but to fill

in the existing gaps in traffic monitoring.

In the next subsection, we explain why the ex-

isting systems (packet filters and classifiers) cannot
fulfill the specific requirements of traffic monitor-

ing systems.

1.2. Traffic filtering: state of the art

Aside from monolithic design approaches

(which lack the flexibility required by networking

scenarios suffering from constant protocol and
service changes), the state of the art in traffic fil-

tering systems can be broadly divided into two

areas: (i) packet filters and (ii) packet classifiers for

high speed routers.

1.2.1. Packet filters

Since traffic analysis in standard PCs and

workstations is under the control of a general
purpose operating system, it turns out that packet

losses may occur, thus biasing the traffic analysis

results. Such measurement errors are normally due

to the processing burdens that result from pro-

miscuous packet analysis at the user level, espe-

cially if network load is significant. In order to

avoid such burdens, packet filters [16] operate at

the kernel level, directly on top of the network
interface device driver. Such packet filters serve to

filter out those packets that are not relevant to the

traffic analysis being performed at the application

layer. As a result, the traffic monitoring server

(Fig. 2) receives a refined packet stream that is

easier to handle, and uses it to update the traffic

parameters. We call this type of design approach

stream-oriented.
The most commonly used packet filter is the

Berkeley Packet Filter (BPF, 1993) [15]. A high-

level imperative language for filter definition is

provided, allowing for flexibility in defining com-

plex filter expressions. However, this high-level

language requires interpretation and subsequent

compilation into the filtering engine machine code.

Thus, filter insertion and removal take a long
processing time. Also, since BPF is not optimized

for filter reuse, redundant comparisons are likely

to occur, resulting in CPU overhead. Earlier and

concurrent packet filter implementations, such as

the CSPF (CMU/Stanford Packet Filter) [16],

Solaris DLPI [23] and Irix Snoop [19], have the

same drawbacks and have been reported to be less
efficient [15].

Match Packet Filter (MPF, 1994) [26], is the first

packet filter to introduce the concept of filter block

reuse, thus outperforming BPF. Additional MPF

enhancements include support of a large number

of filters and packet fragmentation. Nevertheless,

only two filtering levels (protocol and port) are

allowed, and lookup latency is reduced by means of
a hash table. Consequently, filter insertion time is

increased in comparison to BPF, since filter inser-

tion requires adding new entries to the hash table.

PathFinder (1994) [2] is the first packet filter

that provides a declarative filter definition lan-

guage. Pathfinder�s dynamic acyclic graph (DAG)

allows for filter block reuse (longest prefix match)

and it is also amenable to hardware implementa-
tion. Furthermore, it evaluates not only the look-

up latency, but also the insertion cost. However,

the inability to perform filter insertion and re-

moval with no service interruption is a major

drawback for traffic monitoring, as is the fact that

Pathfinder�s insertion cost is high in comparison to

MPF. This is so because already existing filters in

Fig. 2. Stream-oriented architecture.
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the DAG may serve as prefixes for new filters,

meaning that a prefix search is required, along

with memory allocation for the new filter blocks

(cells). In sum, Pathfinder is optimized for lookup

cost, but not for dynamic insertion and removal.

Dynamic Packet Filter (DPF, 1996) [5], is a
packet filter that exploits the flexibility of dynamic

code generation, but at the expense of an even

higher insertion cost than Pathfinder. Finally, a

second version of BPF called BPF+ (1999) [3] in-

corporates an optimized packet filtering scheme

that serves to reduce redundancy. However, BPF+

is also interpreted and the insertion cost is not

negligible. Additionally, an input/output descrip-
tor is required per filter 1 and, due to the operating

system overhead (device creation), the insertion

cost grows even higher. Nevertheless, both BPF+

and DPF are extremely efficient in providing

compilation of a high-level filter definition into

(virtual) machine code. Yet, while the results are

impressive, such features are not required by traffic

monitoring systems, which demand agile handling
of a large number of filters and parameters dy-

namically.

Fig. 2 presents an example of a stream-oriented

architecture, showing a traffic monitoring server

that updates parameters according to the packet

streams it receives (one packet stream per filter). A

stream-oriented architecture operates as follows:

(1) Filters are defined independently and a sepa-

rate queue for each filter is set up in kernel

memory (a separate device in case of BPF

[15]).

(2) Each incoming packet is tested against all fil-

ters.

(3) When a packet verifies a particular filter, either

the entire packet or the packet header is copied
to the traffic monitoring server in user space.

(4) When a packet verifies more than one filter, it

is copied to the queues associated with these

filters.

The stream-oriented packet filter paradigm is

not meant to carry out traffic monitoring func-

tions. First, and regardless of any possible opti-

mization methods (say, for instance, filter block

reuse), the filtered packet streams are delivered

from the packet filter, with traffic parameters be-
coming updated only at the traffic monitoring

server, on top of the packet filter. In this way,

packet filtering and parameter updating are un-

necessarily decoupled, and the creation of packet

copies results in high CPU cost. Furthermore, re-

call that several traffic parameters may be updated

with the very same stream or, conversely, a single

stream may serve to update several parameters.
Therefore, either a filter for each of the parameters

is defined, which will surely lead to unnecessary

packet copies, or a packet classifier is required on

top of the packet filter in order to update the traffic

parameters.

Second, and most important, per filter buffers

must be allocated/deallocated for filter insertion/

removal. This is a simple requirement of a packet
filter architecture (Fig. 2), regardless of the filter-

ing algorithm used. Thus, filter insertion and re-

moval costs are quite significant.

In conclusion, while packet filters are adequate

for detailed packet stream analysis, and the con-

tribution of packet filters to the design of traffic

analysis applications has been extraordinary, the

concept cannot be extended easily to traffic mon-
itoring, since the focus in this case is no longer on

the packet stream itself, but on the traffic para-

meters.

1.2.2. Packet classifiers for high-speed routers

The objective of packet classifiers is to minimize

lookup latency for single routing table entries. This

problem can be resolved as the point location
problem in multidimensional space [7,10,20] or as

the lowest cost matching-filter problem [20]. Since

a packet classifier cannot be used to check several

conditions, it has little applicability to the traffic-

monitoring scenario, in which a single packet may

be called upon to update several traffic parameters.

Furthermore, since packet classifiers work on a

longest-prefix match basis [6] (destination address
field), they lack the filter definition flexibility nee-

ded by a traffic monitoring system. For the latter,

1 BPF requires a kernel device /dev/bpfxxx for each filter,

thus limiting the maximum number of simultaneous filters to

256, which is the maximum value for device minor number in

UNIX file systems. In order to increase the maximum number

of filters, the BPF kernel module has to be duplicated.
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filters may comprise several packet header fields,

not necessarily contiguous. Finally, and most im-

portantly, packet classifiers perform filter insertion

and removal only when a routing table entry is

updated. Clearly, the rate for such updates is sig-

nificantly less than the filter insertion and removal
rate needed by a traffic monitoring system. Con-

sequently, packet classifiers lack the dynamic fea-

tures required for traffic monitoring. In fact,

packet classifiers in high speed routers are opti-

mized to minimize lookup latency [7,10,20], not

to be flexible. With reconfigurations taking place

every time a new filter is updated, the filter inser-

tion processing time is too slow for traffic moni-
toring purposes.

1.3. This work

As an alternative, this paper presents a traffic

filtering scheme called protocol-adaptive moni-

toring tree (PAM-Tree). PAM-Tree is based on a

tree structure that can be configured according to
the protocol architecture of the network being

measured. PAM-Tree provides a filtering data

structure that jointly incorporates parameters and

filters, thus boosting the parameter update pro-

cess. Consistent with the requirements of traffic

monitoring systems, PAM-Tree is based on a de-

clarative filter definition interface [1] that enables

agile filter insertion and removal. PAM-Tree is the
only filtering algorithm that features filter inser-

tion and removal with no service interruption in

the traffic probe, i.e., while performing traffic

monitoring. The costs of both filter insertion and

removal are reduced in comparison with the state-

of-the-art reported figures, as we will show in the

experimental analysis section. In addition, PAM-

Tree is the only algorithm that has been formal-
ized, using input/output automata [11], and the

algorithm properties have been proved. Analytical

performance evaluation (complexity evaluation)

has been carried out, also as a distinctive feature of

this work. Finally, the experimental analysis in-

cludes parameters such as packet size, network

load, number of filters and filter insertion rate

while in service, which have not been considered
before. To the best of our knowledge, this is the

first comparative analysis of existing packet fil-

tering solutions and the first proposal of a novel

algorithm for the specific field of traffic monitor-

ing systems, which is gaining an ever-increasing

importance in the current Internet environment.

2. Protocol-adaptive monitoring tree

Contrary to state-of-the-art solutions, PAM-

Tree is tailored to the needs of a general purpose

traffic probe. The traffic-monitoring server (Fig. 3)

does not receive a packet stream resulting from

application of a filter. Instead, this server submits

the filter, a parameter, and a routine for traffic
parameter handling to PAM-Tree. Upon receiving

a packet, PAM-Tree invokes the routine, and the

parameter value is updated. For most RMONv2

traffic parameters, the routine simply accounts for

the number of bytes per packet or number of

packet arrivals. A traffic probe architecture based

on the PAM-Tree is illustrated in Fig. 3.

The PAM-Tree algorithm operates as follows:
Packets are read promiscuously from the network

interface card, and a copy is buffered. Then,

packets are filtered using a filtering engine (PAM-

Tree graph, which will be defined in Section

2.2) and the corresponding parameters are up-

dated. A parameter is updated if and only if the

Fig. 3. PAM-Tree traffic probe architecture.
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corresponding filter is verified. Recall that a packet

may actually verify several filters and, thus, several

parameters may be updated. Finally, the parame-

ter value is sampled by the traffic monitoring ser-

ver, with the desired sampling interval, and sent

to the monitoring console.
The advantages of PAM-Tree are manifold:

First, unnecessary packet copies from the filtering

engine to the traffic monitoring server are avoided.

Second, PAM-Tree offers the same modularity and

portability as stream-oriented architectures, since

the library interface is very much the same. Third,

the process of setting up and/or tearing down fil-

ters is significantly faster. Filters can be inserted
and removed dynamically, since there is no need to

allocate separate memory streams, but only new

parameters in the filtering engine. Finally, the

packet filtering and parameter update engine is

also optimized for efficiency, avoiding filter repli-

cations.

Thus, PAM-Tree can be seen as a natural and

more efficient extension of the packet filter, one
that provides the performance required in traf-

fic monitoring systems. In order to optimize

traffic filtering, the PAM-Tree algorithm maps

a traffic parameter into a number of subfilters

according to different protocol layers. For in-

stance, a traffic parameter ‘‘number of HTTP

packets between two Ethernet hosts’’ would pro-

duce a subfilter at the MAC layer (Ethertype
equals IP), plus another three subfilters at the

IP layer (Source IP address, Destination IP

address and protocol selector equal to 6-TCP) [8],

along with another one at the transport layer

(destination port equal to 80-WWW). Should a

new traffic measurement be requested, involving

the same IP addresses and a different transport

protocol and service, the subfilters ethertype,
source and destination IP addresses could still be

reused. On the other hand, PAM-Tree is not

coupled to a specific protocol stack. A protocol

database in the console defines the binding be-

tween the protocol stack of the network being

measured and the subfilter arrangement in the

PAM-Tree, through a user-friendly graphical in-

terface.
A detailed formalized description of the algo-

rithm internals is presented in the next section and

in the Appendix A. For brevity, we do not provide

the entire formal specification here, but it is

available upon request [12].

2.1. Preliminary definitions

In order to define the state of the system, we first

provide a set of definitions which will be used

along the next sections. A packet P is defined as a

finite concatenation of bits. The function lengthðP Þ
gives the packet length in bits. The PAM-Tree al-

gorithm will check sequences of contiguous bits

within the packet, which are referred to as fields, in

order to update the corresponding parameters.

For example, a field could be an IP address or a

source port. Fields can be obtained by means of a

mask applied to a packet. A filter is a set of sub-

filters, each subfilter being defined by a field and a
comparison value. Finally, every filter has an as-

sociated traffic parameter, which is updated

whenever a packet verifies the corresponding filter.

It must be noted that the main purpose of PAM-

Tree is to update parameters as new packets are

received by the traffic probe. The above definitions

are formalized as follows:

Definition 1 (Packet). A packet is a finite and

ordered list of ci bits, namely, P ¼ �ck: k ¼
1; . . . ; lengthðP Þ, where � denotes the string con-

catenation operation.

Definition 2 (Field). Sequences of consecutive bits

within a packet are called fields. Let fieldsðP Þ be
the set of fields in P and #fieldsðP Þ its cardinal. Let
Isðj; PÞ and Ieðj; PÞ, 16 j6#fieldsðP Þ be the func-

tion that provides the position of the starting and

ending bit of a field j, with Isð1; PÞ ¼ 1.

Definition 3 (Field l subfilter). Let us consider a

packet P with lengthðP Þ ¼ n and #fieldsðP Þ ¼ k
fields. A field l subfilter is defined as FlðP Þ ¼
ðIsðl; PÞ; Ieðl; PÞ; a; f ;KÞ, 16 l < k and FkðP Þ ¼
ðIsðk; PÞ; n; a; f ;KÞ where a is a real value, f is a

real-valued function (intermediate processing

function) that is applied to the packet field and K
is a logical operator (¼ , <, >, !¼ ). Then

FlðPÞ ¼ True() ðf ðIsðl; PÞ; Ieðl; PÞÞKaÞ ¼ True.
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For each incoming packet P , a traffic parameter

will be updated if and only if the packet fields

satisfy a filter. A filter is defined as a combination

of OR subfilter components. In what follows, ‘‘^’’
represent the AND logic operation and ‘‘_’’ the
OR logic operation.

Definition 4 (OR component). An OR component

is defined as a concatenation of subfilters using

ANDs relations: FORjðP Þ ¼
V

i2fieldsðPÞ FiðP Þ.

Definition 5 (Filter). A filter is defined as an OR

concatenation of one or more OR components:

F ðP Þ ¼ FOR1
ðPÞ _ FOR2

ðPÞ _ 
 
 
 _ FORmðP Þ.

Due to the associative and distributive proper-

ties of the logic operators, any given filter can be

written as in the previous expression. For example,
the following filter G:

G ¼ ðIP ^ ðTCP _UDPÞÞ _ ðIP ^ IPsourceÞ
can be converted to

G ¼ ððIP ^ TCPÞ _ ðIP ^UDPÞÞ
_ ðIP ^ IPsourceÞ

Finally, the traffic parameter is defined as the

variable that is updated whenever a packet verifies

a filter.

Definition 6 (Traffic parameter). A traffic param-

eter is defined as Q ¼ ðid; F ;UpdateFunctionÞ
where id is an identifier, F is a filter and Update-

Function is a function that determines how the

parameter counter must be updated when the as-

sociated filter is verified: i.e., by count of bits,

packets or other.

2.2. Algorithm description

PAM-Tree is based on a data structure that al-

lows the algorithm to insert, remove, poll and

update parameters (PAM-Tree graph). While a

pseudocode specification is provided in the Ap-

pendix A, a natural language description is given

in this section for the sake of readability.

PAM-Tree is an algorithm with two main

functionalities: (i) building the filtering data

structure, which is denoted by PAM-Tree graph
and (ii) updating traffic parameters. In order to

update traffic parameters, incoming packets are

filtered through the PAM-Tree graph. The PAM-

Tree graph is a rooted directed graph, G ¼ ðN ;AÞ,
where N is a set of subfilter nodes (vertices), each
of them representing a field l subfilter, and A is a

set of pairs of distinct nodes from N , ðni; njÞ. Each
pair of nodes in A is called an arc (edge). A filter F
can be viewed as a subtree of G, namely, a se-

quence of nodes ðr; . . . ; nmÞ such that the pairs

ðr; n2Þ; ðn2; n3Þ; . . . ; ðnm�1; nmÞ are arcs of G and r is
the root. The subfilter node nm incorporates the

traffic parameter (see Definition 6) to be updated if
a packet passes the filter F . A PAM-Tree graph is

a dynamic structure, since new filters may be re-

quested at any time. Reuse of common subfilter

nodes takes place whenever a new filter is incor-

porated. An example of a PAM-Tree graph is

provided in Fig. 4.

The PAM-Tree algorithm contains three func-

tional components:

(1) Filter expansion: Each new parameter is ex-

panded into a number of subfilters corre-

sponding to the different packet fields to be

tested. Such expansion is performed by means

of the protocol database, in which the map-

ping between the parameters and subfilters is

defined in advance by the network manager.
This simplifies support of new protocols.

An entry in the protocol database defines the

Fig. 4. PAM-Tree data structure.
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binding between a traffic parameter and a

number of packet fields, which are defined by

relative position, size and meaning. For exam-

ple, a traffic parameter ‘‘Number of IP packets

between two Ethernet hosts’’ is expanded into
three packet fields: MAC layer protocol selec-

tor field (IP), IP source address and IP destina-

tion address. These fields have a one-to-one

mapping to subfilter nodes that compose the

filter associated with the parameter.

(2) Dependencies resolution: Once the set of subfil-

ters for each filter is available, the algorithm

proceeds to check dependencies in order to op-
timally place the subfilters. First, subfilters are

sorted in descending restrictive order. Then a

recursive function is called to check if each

of the subfilters has already been placed in

the filtering tree: if so, no further action is

performed; otherwise, the new subfilters are

interleaved with existing subfilters, from most

to least restrictive.
(3) Search: Upon a packet arrival, there is a search

for matching filters, starting from the root

node. In order to avoid creating packet copies,

a pointer to the incoming packet, and not the

packet itself, is used. The search process results

in either an update of the corresponding

parameter(s), or packet discard.

The proposed algorithm produces a number of

desirable characteristics for a traffic monitoring

system:

• Reusability: Since testing a subfilter at protocol

layer N (IP) involves testing other subfilters at

lower levels (MAC), the chance that a subfilter

is reused is significant.
• Self-organization: Since the tree grows accord-

ing to the filter expansion defined in the proto-

col database, the algorithm is self-organizing.

Each of the traffic probes deployed in the net-

work may be running a different filtering tree

structure, depending on the protocols being ob-

served in each particular network segment and

incorporated to the database. Thus, the PAM-
Tree constitutes a flexible algorithm that can

be configured according to network characteris-

tics and user preferences.

• General purpose application: Traffic parameters

are expanded into a number of subfilters, which

are defined in a protocol database. The use of a

protocol database decouples parameter seman-

tics from packet filtering, ensuring adaptability
to protocols and services. In the PAM-Tree

implementation, the protocol database is in-

corporated into the console, or, optionally, into

any SQL server present in the network. In

order to add a new protocol or service we sim-

ply need to incorporate it into the protocol data-

base.

Furthermore, the following two lemmas, which

are given without proof (see [12]), assert important

properties of the algorithm. The first one shows

that filters and parameters are inserted on-the-fly

in the PAM-Tree graph. The second one shows

that filters share common prefixes (subfilters), thus

avoiding repeated testing of the same subfilter and

greatly improving filtering performance.

Lemma 1. The algorithm allows for filter insertion
and removal with no service interruption.

Lemma 2. All the inserted filters reuse the longest
common prefix of subfilters.

Moreover, the algorithm allows for running
several operations in parallel on the PAM-Tree

graph. In this way, the algorithm can safely insert,

delete, poll and update parameters, meaning that

the operations can be parallelized with no risk to

information consistency [12]. Thus, multiprocessor

systems can be safely used to maximize algorithm

performance.

3. Performance evaluation

We evaluated the computational complexity of

PAM-Tree by means of both analysis and real

experiments, noting that none of the packet filter

algorithms reported in the state-of-the-art section

provides exact or asymptotic expressions for the
average complexity. The analysis provided in this

section is restricted to evaluation of the average

complexity of the algorithm and does not consider
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side effects such as operating system overheads,

which also influence performance. Such effects are

under the responsibility of the operating system

and are not inherent to the algorithm being eval-

uated. Therefore, we will follow the usual practice

in computational complexity analysis and pur-
posely ignore such effects.

The following methodology is adopted from [4,

Chapter 9] in order to derive the average com-

plexity. The complexity of an algorithm is a

function of the size of the data structure on which

the operations are performed. For example, when

searching or sorting a list, the data structure size is

the number of elements in the list. For PAM-Tree,
the data structure is the PAM-Tree graph defined

in the previous section. First, the set of all possible

PAM-Tree graphs of the same size is considered.

Then, the complexity of each PAM-Tree graph is

evaluated as the average number of basic opera-

tions performed per packet. Finally, the average

complexity is obtained by averaging the complex-

ities of each PAM-Tree graph over the set of all
possible PAM-Tree graphs of the same size. For

simplicity, the analysis will be restricted to the

case of only two subfilters per filter (the case

with more than two subfilters per filter is consid-

ered in [12]).

The size relates to the maximum number of

basic operations that may be performed by the

algorithm. For PAM-Tree, a basic operation is a
visit to a subfilter node. The PAM-Tree graph size

is defined accordingly.

Definition 7 (PAM-Tree graph size). Let us con-

sider a packet P of m fields and a PAM-Tree graph

I . Let fFIðjÞg, 16 j6m be the set of all possi-

ble field j subfilters. The size of a PAM-Tree graph

I is defined as the m-tuple ðK1; . . . ;KmÞ where
Kj ¼ #ðfFIðjÞgÞ and # represents the cardinal of a

set.

Definition 8 (Average complexity). For each in-

coming packet P , let us assume, without loss of

generality, that the cost of a visit to a subfilter

node is equal to unity. Let us now consider the set

XðK1;...;KmÞ of all possible PAM-Tree graphs of size
ðK1; . . . ;KmÞ, namely the set of all possible directed

graphs ðN ;AÞ with Ki subfilters defined for packet

field i. The average complexity is defined as [4, p.

77]

AðXÞ ¼
X

I2XðK1 ;...;KmÞ

sðIÞpðIÞ ð1Þ

where sðIÞ is the average cost for PAM-Tree graph

I and pðIÞ its probability mass function.

Let us define the equivalence relation � as fol-

lows: For all I ¼ ðN ;AÞ; I 0 ¼ ðN 0;A0Þ 2 X I � I 0

() #ðAÞ ¼ #ðA0Þ. The induced equivalence clas-

ses are formed by PAM-Tree graphs I with the

same number of filters. Let us denote the equiva-

lence class for n filters as ½n�X. It will be assumed

that all possible equivalence classes ½n�X have the

same probability. For simplicity, it will also be
assumed that at most one filter will pass the test

for any given packet. Then

maxðK1;K2; . . . ;KmÞ6 n6
Ym
i¼1

Ki; m > 0: ð2Þ

The lower and upper bounds are obtained by

considering the PAM-Tree graphs with minimum
and maximum number of arcs, as shown in Fig. 5

for size ðK1;K2Þ. Intuitively, the fully meshed

PAM-Tree graph has greater complexity, since

more subfilter nodes have to be visited by incom-

ing packets.

Let Oi be the number of possible outcomes of

field i, for all packets P . For PAM-Tree graphs

with subfilter nodes at two levels only (XK1;K2
) the

average complexity is equal to

AðXÞ ¼ 1

K1K2 �maxðK1;K2Þ þ 1

�
XK1K2

n¼maxðK1;K2Þ
K1 1

��
þ 1� K1

2O1

�

þ K1

O1

� �
n� K1

K1

1

��
þ 1

2O2

� ðK2 � 2ÞðK1 þ 1� nÞ
K1ðK2 � 1Þ � 1

� ����
ð3Þ

and, for a stream-oriented implementation with

the same number of filters
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AsðXÞ ¼
1Qm

i¼1 Ki �maxðK1;K2; . . . ;KmÞ þ 1

�
XQm

i¼1
Ki

n¼maxðK1;K2;...;KmÞ

nþ 1

2
: ð4Þ

The proof of both expressions is given in the

Appendix A. In the above calculations, it is as-
sumed that the processing cost per filter is the same

regardless of the number of packet fields included

in the filter. Actually, a significant increase in

processing cost is observed when the number of

bits in the filter is greater than the capacity of the

ALU registers, since registers have to be fetched

several times. Thus, a best case scenario for the

stream-oriented architecture is considered here,
since the larger the number of bits per filter, the

worse the performance.

3.1. Stream-oriented architecture and PAM-Tree

comparative

We performed extensive numerical simulations

of the previous analytical expressions [17], and in
most cases PAM-Tree outperformed the stream-

oriented architecture. The percentage of cases in

which PAM-Tree outperformed the stream-ori-

ented implementation, for a system with O1 ¼
O2 ¼ 100 and all possible values of K1 and K2 in

the range 16K1 6O1 and 16K2 6O2, is shown in

Fig. 6. For a reduced number of filters (less than

80 in Fig. 6) a stream-oriented implementation is
proved better. That was the case for network ap-

plications such as tcpdump. On the other hand, for

a number of filters in the range ð105; 10000ð¼
O1O2ÞÞ, PAM-Tree always outperformed the

stream-oriented architecture. Note that the full

range is not shown in Fig. 6 in order to provide

better detail of the lower ð0; 105� interval, but the
curve is equal to one in the range ð105; 10000�.
Traffic monitoring probes are expected to operate

in the latter interval.

Fig. 7 shows the case for a traffic matrix of 256

hosts in a class B IP subnetwork. We assumed that
IP was the only network protocol running in the

subnetwork so that no filter at the link level was

required. However, one filter per source and des-

tination IP address pair was necessary. Thus, the

resulting PAM-Tree graph has only two subfilter

node levels, and the following values for K1, O1,

K2, O2:
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• Level 1––Source IP address: (4 bytes)

O1 ¼ 216 ¼ 65536; Class B subnetwork

K1 ¼ 256; 256 source IP addresses

	

ð5Þ
• Level 2––Destination IP address: (4 bytes)

O2 ¼ 216 ¼ 65536; Class B subnetwork
K2 ¼ 256; 256 destination IP addresses

	

ð6Þ

The results showed that in stream-oriented ar-

chitecture, average complexity increased linearly

with the number of filters (Eq. (4)), because filters

were tested sequentially. In PAM-Tree, however,

average complexity remained nearly constant, be-

cause the hierarchical arrangement of subfilter
nodes reduced relative packet sojourn time. In

fact, if O1;O2 !1 in Eq. (3) then AðXÞ ! K1.

Precisely, Fig. 7 shows a value of AðXÞ in the vi-

cinity of K1 ¼ 256. The stream-oriented architec-

ture is more advantageous when using fewer filters

(as shown in Fig. 6), but it is less robust as the

number of filters increases, as in the case of traffic

monitoring.
In other words, in the stream-oriented archi-

tecture case, since average complexity is related to

number of filters, we would expect a linear CPU

load increase as the number of filters increases.

Conversely, CPU load must remain nearly con-

stant with PAM-Tree. Such hypotheses were

verified in the experiments presented in next sub-

section.

3.2. Empirical evaluation

The performance figures considered in the em-

pirical evaluation were the following:

• CPU load versus number of simultaneous filters.

• CPU load versus network load, for a fixed num-
ber of filters.

• Filter insertion and removal rate, with no pause

in traffic monitoring.

In order to provide a comparative performance

analysis, two different versions of traffic monitor-

ing probes were considered, with the following

filtering engines: (i) PAM-Tree and (ii) kernel-level

filtering (libpcap [14] +BPF). The results obtained

from the comparative performance analysis rein-

force the point that packet filter techniques are not

efficient for traffic monitoring applications with a
large number of traffic parameters.

On the other hand, PAM-Tree runs in user

space due to the availability of software to mea-

sure CPU load separately for each of the algorithm

tasks (insertion, deletion, packet filter, and pa-

rameter update). Such fine grain measurements

cannot be performed at kernel level [25]. There-

fore, the performance figures are obtained from a
worst case evaluation scenario, due to the extra

overhead from packet copies between kernel and

user spaces. In regards to packet filters other than

BPF, either evaluation versions are unavailable

(BPF+), or they only run under unavailable op-

erating systems (Mach).

3.2.1. Performance measurement scenario

The experimental setup consisted of a network

segment with three elements: (i) a traffic generator

that allowed introduction of different network

loads and traffic characteristics, (ii) a traffic probe

running a PAM-Tree, and (iii) a traffic probe

running BPF. The two probes and the traffic

generator were implemented via Pentium II 350-

MHz PCs in a dedicated 100 Mbps Ethernet net-
work.

We performed the following experiments:

• Constant network load and variable number

of filters: The traffic generator flooded the net-

work with 3 Mbps constant rate traffic, and a

new filter was added to both traffic probes ev-

ery 10 s. That allowed enough time for the
packet filter (BPF) to add the new filter, allo-

cate the stream buffer with the traffic monitor-

ing application and reach the steady state

regime.

• Constant number of filters and variable network

load: In both traffic probes, 200 filters were de-

fined, with the network load taking on values

from 500 to 95 Mbps. Regarding the traffic gen-
erator, packet headers contained random num-

bers and not values from real traffic traces, in
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order to achieve maximum randomness. This

was a worst case scenario for traffic monitoring,

since a large number of non-overlapping filters

had to be produced.

Figs. 8 and 9 show CPU load for both experi-

ments. Regarding the constant load/variable filters

experiment, in the packet filter implementation,

CPU load increased linearly with the number of

filters. We conducted an additional experiment

under constant network load conditions, in which

we repeatedly added the very same filter several

times. The results clearly showed that the combi-

nation of libpcap and BPF did not provide any

subfilter reuse whatsoever, but that was not the

case for PAM-Tree. Furthermore, adding new fil-

ters to the packet filter implied extending the

search space, producing a linear CPU load in-

crease, as seen in Fig. 8.
In the case of the PAM-Tree implementation,

however, we found an almost constant result, ex-

plainable by its hierarchical and reusability prop-

erties. We increased the number of filters defined in

PAM-Tree up to 6000, and noted that the CPU

load was under 10% in at all times. While other

BPF-like systems do not have a maximum limit of

256 on the number of filters, a linear CPU load
increase with the number of filters was also ob-

served, since they also responded to the stream-

oriented paradigm.

Additionally, the results in Fig. 8 were consis-

tent with the analytical performance evaluation

(see Fig. 7), which indicated a linear CPU load

increase (for stream-oriented systems) versus a

nearly constant CPU load increase (for PAM-
Tree), with the number of filters. It must be noted

that there are many contributions to CPU load,

such as interruptions or packet copies. Even

though such contributions are not taken into

account in the analysis, the analytical model ac-

curately predicts the behavior of both stream-

oriented and PAM-Tree implementations.

Regarding the second experiment, CPU load
versus network load, PAM-Tree showed a good

Fig. 8. CPU load versus number of filters, with constant net-

work load of 3 Mbps.
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performance in comparison to the packet filter

implementation, even though the CPU load in-

crease was now linear for both of them.

Finally, a last experiment was performed,

sending filter insertion requests to both PAM-Tree

and BPF continuously at line rate. Fig. 10 shows
elapsed time for PAM-Tree versus number of fil-

ters for different network loads (0, 5, and 10

Mbps). Filters were composed of four subfilters:

Ethernet, IP, source and destination IP address

(with different source and destination IP addresses

per filter). Filter setup time with no load was

on the order of 10 ls. For BPF, the insertion

time per filter is in the order of milliseconds and
it is constant because subfilters can not be re-

used. PAM-Tree is the only packet filter which can

satisfy this requirement of traffic monitoring sys-

tems.

4. Implementation of a traffic monitoring system:

monet

MONET is a traffic monitoring system that in-

corporates PAM-Tree as the filtering engine. The

tool has been successfully deployed in a re-

gional cable operator (Retena S.A., Spain) and it

is currently used to monitor both cable modem

headends and the company Intranet. Prior to

MONET, the PROMIS tool [13] incorporated a
limited version of the PAM-Tree algorithm.

MONET is a distributed system, with probes

located in each network segment to be monitored

and a central console that receives monitoring in-

formation. The probes have been developed using

Pentium II 350 MHz PCs with Linux operating

systems and Ethernet 10/100 interfaces. A graphi-

cal user interface written in Java is incorporated

into the console, in order to present the informa-
tion to the network manager in an intuitive way

(using graphic bars, time series plots, etc.) as

shown in Fig. 11(a).

The filters and parameters are also defined in the

console. Fig. 11(b) shows a filter definition in the

MONET console. In this example, an arbitrary

number of bits in the TCP header can be selected

in order to set up a filter. Then, the console
translates the filter definition into (offset, mask,
value) and this filter definition is relayed to the

corresponding traffic monitoring probe that is

running the PAM-Tree algorithm.

5. Conclusions

We have presented a novel PAM-Tree algorithm

for traffic monitoring in this paper. We have

shown that stream-oriented algorithms (packet

filters) are not suitable for monitoring scenarios

where thousands of filters run concurrently and

dynamically change. In fact, neither the memory

management scheme (using stream buffers) nor the

filtering technique (implementing packet streams)
are tailored to the special case of network traffic

monitoring. We believe that performance com-

parisons with newer versions of BPF, such as

Fig. 11. MONET console: (a) console snapshot and (b) filter definition interface.
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BPF+ (still not publicly available) will yield similar

results. Even though these newer algorithms

promise to avoid filter redundancy, they still pro-

vide one packet stream per parameter.

In contrast, PAM-Tree provides very good per-

formance for traffic monitoring systems, and is es-
pecially effective at allowing filter insertion and

removal with no service interruption. In addition,

we are currently porting PAM-Tree to embedded

Linux in order to develop traffic measurement

probes for ATM and IP-over-WDM networks.

Concerning future work, we plan to extend PAM-

Tree�s capabilities to support not only packet filter-

ing but also connection filtering. By adding the
TCP connection state to the algorithm functional-

ities, we will be able to provide TCP connection

statistics, such as duration, bytes transferred, and

more.
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Appendix A

A.1. PAM-Tree pseudocode

A brief pseudocode for the most important
PAM-Tree primitives is provided in this ap-

pendix. The full PAM-Tree specification is writ-

ten with the input–output automata formalism

[12]. The PAM-Tree actions are displayed in Fig.

A.1.

Given a PAM-Tree graph G ¼ ðN ;AÞ:

• Symbol // indicates comments.

• For a parameter Q, the filter Q:F is composed by the subfilters F1; . . . ; FN .
• subfilter(subfilter node n)¼ Fj if and only if the subfilter node n represents the subfilter Fj.
• sons(subfilter node n)¼ffn1; n2; . . . ; nmg 2 N such that fðn; n1Þ; ðn; n2Þ; . . . ; ðn; nmÞg 2 Ag.
• son(subfilter node n, subfilter Gk)¼fni 2 N such that ðn; niÞ 2 A and subfilter ðniÞ ¼ Gkg.
• parameters(subfilter node n)¼ffQ1;Q2; . . . ;Qrg 2 n, where Qi ¼ ðid; F ;UpdateFunctionÞg.

SetParam(Parameter Q)
preconditions: PAM-Tree graph G ¼ ðN ;AÞ, Parameter Q ¼ ðid; F ;UpdateFunctionÞ,

subfilter node CurrentNode ¼ ;
effects:

// Current node is root node

CurrentNode rootðG:NÞ
// For each subfilter in the filter associated to the parameter

FOREACH ðFi 2 Q:F Þ
// If the subfilter is not already in the graph, add the subfilter

IF Fi 62 sonsðCurrentNodeÞ THEN

sonsðCurrentNodeÞ  sonsðCurrentNodeÞ [ Fi
ENDIF

// Proceed with the next level in the tree

CurrentNode sonðCurrentNode; FiÞ
ENDFOREACH

// Attach the parameter to the last subfilter node in the filter Q:F
parametersðCurrentNodeÞ  parameters ðCurrentNodeÞ [ Q
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The SetParam() action is enabled when the

PAM-Tree receives a parameter set request. By

execution of this action a parameter is inserted

in the structure. That is, the structure is updated

with a set of subfilter nodes, if necessary, and a

parameter node. The process starts from the

root node. For each level, the subfilter being in-

serted is compared with previously inserted sub-

filter nodes. If it already exists, the subfilter node is

reused for this new parameter; otherwise a new

DelParam(Parameter Q)
preconditions: PAM-Tree graph G ¼ ðN ;AÞ, Parameter Q ¼ ðid; F ;UpdateFunctionÞ,

subfilter node CurrentNode ¼ ;, subfilter node NextNode ¼ ;
effects:

// Current node is root node

CurrentNode rootðG:NÞ
// For each subfilter in the filter associated to the traffic parameter

FOREACH ðFi 2 Q:F Þ
NextNode sonðCurrentNode; FiÞ
// If the subfilter is not a part of a filter associated to another parameter,

// remove the subfilter from the PAM-Tree graph.
IF (NextNode 62 fQi:F : 8Qi 2 parametersðnÞ where n 2 Ng) THEN

sonsðCurrentNodeÞ  sonsðCurrentNodeÞ � Fi
ENDIF

// Proceed with the next node down in the hierarchy

CurrentNode NextNode

ENDFOREACH

// Remove the parameter

parametersðCurrentNodeÞ  parametersðCurrentNodeÞ � Q

Packet(Packet P)
preconditions: PAM-Tree graph G ¼ ðN ;AÞ, Packet P , subfilter node CurrentNode ¼ ;,

subfilter node Sons ¼ ;
effects:

// Current node is root node

CurrentNode rootðG:NÞ
// Sons stores all nodes to check
Sons sonsðCurrentNodeÞ
// Check if the packet verifies node subfilters in Sons

FOREACH ðCurrentNode 2 SonsÞ
IF (CurrentNode verified by P )

// Update all parameters attached to the subfilter node using the

// parameter update function (Definition 6)

UpdateFunctionðfQi : Qi 2 parametersðCurrentNodeÞgÞ
// Keep searching down in the corresponding branch
Sons Sons [ sonsðCurrentNodeÞ

ENDIF

// Delete current subfilter node reference from Sons to check the next one

Sons Sons� CurrentNode

ENDFOREACH
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subfilter node is inserted. The process is repeated

until the last subfilter node is reached. Finally, the

parameter is attached to the last subfilter node.

Traffic parameters can be eliminated by execu-
tion of the action DelParam(). From the root

node, the corresponding set of subfilters and pa-

rameter node are eliminated if and only if such

nodes are not used to evaluate any other moni-

toring parameter.

The Packet() action is the core of the algorithm.

For each packet, the function performs a test on a

set of subfilters starting from the root node of the
PAM-Tree graph. If the packet satisfies several

filters, the associated parameters are updated. The

processing cost to update the whole set of pa-

rameters is reduced since a test for a subfilter al-

lows updating more than one parameter.

Finally, the action PollParam() is executed in

order to look for the value of a parameter. By

execution of this action the traffic server gets the
value of the required traffic parameter.

A.2. Proof of Eq. (3) (PAM-Tree with two sub-

filter levels (XK1;K2
))

The starting point is the definition of average

complexity (Eq. (1)). Let the random variable M

denote the walk length. Let the random variable X
denote the cost, measured in number of subfilter

nodes visited. Let Xi be the number of level i
subfilter nodes visited, i ¼ 1; 2. Clearly X ¼
X1 þ X2 and, necessarily, M 2 f1; 2g thus

AðXÞ ¼ P ðM ¼ 1ÞE½X1 þ X2jM ¼ 1�
þ ð1� P ðM ¼ 1ÞÞE½X1 þ X2jM ¼ 2� ðA:1Þ

If the walk length M is equal to 1, then X2 ¼ 0 and

X1 ¼ K1 a.s., since all level 1 subfilters must have

been visited by the incoming packet and none of
them is verified. On the contrary, if M ¼ 2, and

assuming that all level 1 subfilter nodes have the

same probability of being visited, then E½X1� ¼
ð1=K1Þ

PK1

i¼1 i ¼ ðK1 þ 1Þ=2. In order to calculate

P ðM ¼ 1Þ let Oi be the number of possible out-

comes of field i, for all packets P . Then

P ðM ¼ 2Þ ¼ K1=O1 and, using (A.1),

AðXÞ ¼ K1 1

�
þ 1� K1

2O1

�
þ K1

O1

� �
E½X2� ðA:2Þ

where E½X2� depends on each particular PAM-Tree
graph. For instance, if a level 1 subfilter node is

verified in the left PAM-Tree graph shown in Fig.

5, then only one subfilter node at level 2 will be

visited and X2 ¼ 1 a.s. For the right graph, how-

ever, X2 is a uniform random variable Uð1;K2Þ and,
thus, E½X2� ¼ ðK2 þ 1Þ=2. Since the equivalence

classes ½n�X (Eq. (2)) define a partition of X then

E½X2� ¼ E E½X2j½n�X�
� �

ðA:3Þ

For any PAM-Tree graph I ¼ ðN ;AÞ let ai ¼
cardðfðnk; nlÞ 2 Ajk ¼ i; l ¼ 1; . . .K2gÞ, i ¼ 1; . . . ;
K1 be the number of arcs departing from node i.
Fig. A.2 shows an example with ai ¼ 4. Now,

for any PAM-Tree graph I 2 ½n�X, the tuple

ða1; . . . ; aK1
Þ is a random vector that fulfills:

a1 þ a2 þ 
 
 
 þ aK1
¼ n; ðA:4Þ

ai 2 maxð1; ðn½ � ðK1 � 1ÞK2ÞÞ;
minðK2; n� ðK1 � 1ÞÞ�; 16 i6K1: ðA:5Þ

Eq. (A.4) follows from the fact that I 2 ½n�X; Thus,
the total number of filters is equal to n. For two

subfilter levels the number of filters is equal to the

number of arcs in the graph I . Eq. (A.5) provides

the range of each ai, noting that the lower bound is

Packet()

Packet driver (promiscuous mode)

Traffic monitoring server

To monitoring console

SetParam() PollParam()

PAM-Tree

PAM-tree graph (N,A)

DelParam()

Fig. A.1. PAM-Tree interface.

476 E. Maga~nna et al. / Computer Networks 42 (2003) 461–479



n� ðK1 � 1ÞK2 if n > ðK1 � 1ÞK2 and 1 otherwise.

The upper bound cannot be larger than K2 in any

case. Since all level 1 subfilters nodes must have at

least one departing arc, the upper bound is always

lower than n� ðK1 � 1Þ. On the other hand, as-

suming that level 1 subfilter nodes have the same
probability of being visited, E½x2j½n�X� can be found

by conditioning to any subfilter node i and

E½X2j½n�X�
¼ E E½ðX2j½n�XÞjai

�
¼ j�

�

¼
XminðK2;n�ðK1�1ÞÞ

j¼maxð1;ðn�ðK1�1ÞK2ÞÞ
E½ðx2j½n�XÞjai ¼ j�P ðai ¼ jÞ:

ðA:6Þ

For all PAM-Tree graphs I 2 ½n�X, the probability
mass function for ai is equal to

P ðai ¼ jÞ ¼

K2 � 1
j� 1

� �
ðK1 � 1ÞðK2 � 1Þ
n� K1 � ðj� 1Þ

� �

K1ðK2 � 1Þ
n� K1

� �

ðA:7Þ
since at each level one subfilter node has at least

one departing arc and the remaining n� K1 arcs

may be placed in

K1ðK2 � 1Þ
n� K1

� �

different manners, out of which only

K2 � 1

j� 1

� �
ðK1 � 1ÞðK2 � 1Þ
n� K1 � ðj� 1Þ

� �

provide j departing arcs from subfilter node i. On

the other hand, let the probability of passing a

filter at level 2, assuming that node i was visited at

level 1, be equal to ai=O2. Following the same
argument as with Eq. (A.2)

E½ðX2j½n�XÞjai� ¼ ai 1

�
þ 1� ai

2O2

�
ðA:8Þ

since ðX2j½n�XÞ is equal to ai a.s. if none of the ai
subfilter nodes at level 2 is verified and equal to

1

ai

Xai
j¼1

j ¼ ai þ 1

2

otherwise. Then

E½X2j½n�X�

¼
XminðK2;n�ðK1�1ÞÞ

j¼maxð1;ðn�ðK1�1ÞK2ÞÞ
j 1

�
þ 1� j

2O2

�
P ðai ¼ jÞ

¼ E½ai� þ
1

2O2

ðE½ai� �E½a2i �Þ

¼ n�K1

K1

1

�
þ 1

2O2

ðK2� 2ÞðK1þ 1� nÞ
K1ðK2� 1Þ� 1

� ��
:

ðA:9Þ

In the derivation of the previous expression it must

be noted that ai is a hypergeometric random

variable. Now, substitute the previous expression

in Eq. (A.3), and Eq. (A.3) in Eq. (A.2) to obtain

AðXÞ ¼ 1

K1K2 �maxðK1;K2Þ þ 1

�
XK1K2

n¼maxðK1;K2Þ
K1 1

��
þ 1� K1

2O1

�

þ K1

O1

� �
n� K1

K1

1

��
þ 1

2O2

� ðK2 � 2ÞðK1 þ 1� nÞ
K1ðK2 � 1Þ � 1

� ����

ðA:10Þ

which is precisely Eq. (3). The above analysis can

be extended to any size ðK1; . . . ;KmÞ (Definition 7)

using an induction argument for subsequent levels

O 1

K 1 K

O 2

2

Level 1

1

2

3

1

2

ai i

Level 2

subfiltersubfilter

Fig. A.2. Example of subfilter arrangements.
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and taking into account the dependencies between

subfilters at different levels [12].

A.3. Proof of Eq. (4) (stream-oriented architec-

ture)

From Section 1.2.1 recall that the stream-ori-

ented implementation is based on sequential testing

of filters. Furthermore, it will be assumed that only

one filter will pass the test for any given packet. For

a fixed number of filters, the average complexity is

thus equal to the average complexity of a linear

search. Since a graph I in the equivalence class ½n�X
defines n filters, then for all graphs J 2 ½n�X,

sðJÞ ¼ 1

n

Xn

i¼1
i ¼ nþ 1

2

and the complexity AsðXÞ can be derived as follows

(see [4, p. 77]):

AsðXÞ ¼
X

I2XðK1 ;...;KmÞ

sðIÞpðIÞ

¼
X
8½n�X

nþ 1

2
pð½n�XÞ ðA:11Þ

and, from Eq. (2),

AsðXÞ ¼
1Qm

i¼1 Ki �maxðK1;K2; . . . ;KmÞ þ 1

�
XQm

i¼1
Ki

n¼maxðK1;K2;...;KmÞ

nþ 1

2
ðA:12Þ

which is Eq. (4).
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