
PROMIS: A Reliable Real-Time Network Management Tool for Wide
Area Networks

Eduardo Magafia, Javier Aracil, Jestis Villadangos
Dpto. Automatics y Computacih

Universidad Ptiblica de Navarra
Campus Arrosadia s/n
31006 Pamplona, Spain

{ eduardo. magana, j avier . aracil, j esusv} @upna. es

Abstract

This paper presents the PROMIS tool, a new net-
work management Loo1 based on a distributed archi-
tecture of t ra f ic pmbes. PROMIS allows authorized
users to monitor trafic f rom any W A N segment us-
ing a WWW console or a Tcl/Tk graphic interface.
In contrast to current network monitoring platforms
based in S N M P (Simple Network Management Proto-
col) or R M O N (Remote network MONitor), PROMIS
is based on an optimized software architecture that uses
a reliable transport protocol (T C P) to provide lossless
transmision of monitoring information, thus allowing
for real-time monitoring irrespective of network load.

1. Introduction

Nowadays, we are witnessing a huge demand for
client-server applications that require a guaranteed
Quality of Service (QOS) from the network. In order
to provide such &OS it is necessary to monitor network
traffic so that preventive actions can take place before
network congestion is detected. This implies the use
of network monitoring tools that allow network man-
agers to have a global view of the whole network from
a single, centralized location.

Such network monitoring tools should provide a
good granularity in traffic measurements in order to
obtain an accurate picture of the network in real-time.
Other desirable features are alarm programming capa-
bilities and automatic detection of network failures.

Furthermore, traffic capture capabilities are also
convenient in order to analyze network performance
during a period of time. A packet-level capture is ad-
equate to perform t race-driven simulations, that prove

useful for network dimensioning purposes. On the
other hand, traffic filters for both real-time and non
real-time measurements should be available in order to
have a detailed view of protocols, applications or spe-
cific hosts.

Recent measurements of LAN and WAN traffic show
that Internet traffic presents self-similar features [4, 81.
Namely, the observed traffic presents the scaling prop-
erty: no matter the time scale that we consider the
normalized packet counting process looks the same in
a distributional sense. Traffic burstiness is present at
any time scale in contrast to the Poisson process which
tends to smooth out with increasing time scales.

Such high variability in network traffic makes
SNMP/RMON management platforms vulnerable
since both alarms and data can be lost in congestion
periods. Such potential data loss is due to the unreli-
able nature of the transport protocol (UDP) used by
SNMP/RMON and the polling scheme from manager
to agent. Neither requests nor alarms are confirmed by
SNMP, whose design criteria responds for non real-time
purposes. Congestion periods are interesting from a
network management perspective since they determine
network performance. Therefore, accuracy in traffic
monitoring is needed specially during network conges-
tion stages. In a 100 Mbps network a burst congestion
period of 1 second implies the loss of about 100 Mb
of data. Recent studies [2] show that the HTML page
mean size is around 50 KB, therefore 250 HTML pages
may be lost. This is a quite simplistic example which
illustrates that the more network capacity, the more
resolution in traffic measurement is needed.

This paper presents the architecture and functions of
a new network monitoring tool, PROMIS, that offers a
true real time traffic parameters monitoring. PROMIS
gives the typical functionalities of a SNMP/RMON

1089-6503198 $10.00 0 1998 IEEE
581

management system, but a higher reliability is pro-
vided by means of using a reliable transport protocol
and an optimized software architecture for traffic man-
agement.

The rest of this paper is structured as follows: sec-
tion 2 presents the state of art in traffic monitor-
ing tools and section 3 presents PROMIS architec-
ture. Section 4 is devoted to an in-depth description of
PROMIS probe and console. We evaluate PROMIS us-
ing stress tests in section 5. Finally, section 6 presents
the conclusions that can be drawn from this study.

2. State of art

Current network monitoring tools can be grouped
as follows:

0 Protocol analyzers or sniffers: sniffers are normally
implemented on a portable PC platform so that
the network operator can monitor traffic on a given
link. Sniffers provide good granularity and limited
traffic capture capabilities but they do not give a
global view of the network.

0 Management tools based in RMON: such tools
provide a centralized console and RMON probes
from which traffic statistics are collected. We will
show later that such platforms are not adequate
for real-time traffic monitoring.

Protocol analyzers are hardware/software dedicated
systems that allow traffic monitoring of network seg-
ments. However, the analysis scope is limited to a
single collision domain. Thus, a global view of the
network is lost. Furthermore, they do not allow for
continuous network control nor for a,larm generation
or significant traffic captures. Therefore they are not
suited for network management purposes but to solve
isolated problems. Proactive network maintenance re-
lies on the use of network management tools that pro-
vide an early warning of trouble by notifying managers
of deviations from normal behaviour patterns. This
objective cannot be achieved with the use of protocol
analyzers.

The SNMP/RMON management platforms (H P
Openview, SunNet Manager, IBM Netview and Ca-
bletron Spectrum) provide a global view of all WAN
segments. Either the network active elements (bridges,
routers and switches) or dedicated hardware probes
have SNMP (Simple Network Management Protocol)
[l] and RMON (Remote network MONitor) [9] probes
in charge of gathering traffic information.

The SNMP protocol is based on a polling scheme
from manager to agent. In order to monitor a given

network parameter the manager sets the adequate val-
ues in the agent control tables. On the other hand, the
agent can deliver information to the manager by means
of a trap. Even though MIB-I1 [5] parameters are
too generic (for example, accumulative bytes or pack-
ets), the RMON standard defines a MIB that supports
significant information regarding traffic management:
segment statistics, historic data, alarms, filtering capa-
bilities per host, traffic between machines, top traffic
machines, events, filters and packets captures.

The SNMP/RMON standards present the following
disadvantages regarding traffic monitoring:

0 Polling is CPU intensive in the manager since it
has to keep track of the different polling inter-
vals for different parameters. Furthermore, in long
round-trip delay environments polling is unpracti-
cal and limits real-time features.

0 Since UDP is used as transport protocol, neither
alarm transmissions from agent to manager nor
requests from manager to agent are guaranteed.

0 In highly loaded environments real time traffic
monitoring is limited because manager requests
and agent replies can be lost. Note that a con-
gested situation is most interesting from a network
management perspective. In such situation valu-
able management information can be lost.

0 Remote monitoring is not possible through the In-
ternet since a request/reply scheme with unreli-
able transport is unrealistic.

0 Capture size is normally limited by probe or net-
work active element RAM memory.

Such disadvantages have been studied previously
in the literature [6, 71. PROMIS tries to overcome
the above mentioned limitations by using a reliable
transport protocol and an optimized software architec-
ture to minimize information loss. Thus, it enhances
SNMP/RMON functionality by adding reliability and
real-time monitoring capabilities.

3. PROMIS Architecture

PROMIS components are console and probe. Sev-
eral consoles can be active simultaneously on different
machines. Probes are placed in each network segment
to be monitored and they serve real-time traffic infor-
mation as a WWW server would do. Therefore they
provide a truly distributed environment so that traffic
information can be accesed reliably from any host in

582

WIDE AREA NETWORK
" S O L E

Figure 1. Netwwk management scenario us-
ing PROMIS

the Internet. Figure 1 presents a network management
scenario using PROMIS.

Traffic collection and processing is performed in the
probe in order to guarantee that a minimum amount
of information trafFic to the console is transmitted
through the network. PROMIS incorporates the fol-
lowing features:

0 A variety of network performance parameters are
monitored in real-time, ranging from global statis-
tics (bytes/sec, packets/sec and mean utilization)
to statistics filtered by machine, protocol, service
and application.

0 Alarms can be generated from any probe to the
console.

0 An expert system for automatic detection of net-
work failures is provided, based on ICMP and a
set of rules programmed by the network manager.

0 Traffic capture capabilities are also provided.

0 PROMIS probe incorporates an SNMP manager
for communication with network active elements.

0 PROMIS learns network topology in a continuous
fashion through consultation of router tables using
SNMP.

PROMIS probes use SNMP to access router tables
in order to obtain the IP and MAC address of the seg-
ment hosts. A data,base is kept with all the necessary
information to send real-time statistics and perform
traffic captures on demand. PROMIS options can be
outlined as follows:

0 Monitor mode: In monitor mode the console re-
ceives traffic parameters in real-time and prob-
lem symptoms detected by the expert system.
Such traffic parameters include bytes per second,
packets per second and percentage over total ob-
served traffic of the following services: FTP, Tel-
net, SMTP, WWW, POP2, POP3 and TALK.
Futhermore, the same statistics are available for
the following protocols: TCP, UDP, ICMP, ARP,
AppleTalk(2 versions), IPX and NetBios. Any
other protocol on top of IP can also be monitored.

0 Capture mode: This mode allows to program a
capture of the required traffic parameter speci-
fying the desired time interval. Capture data
is stored in probe hard disk (1.5 GB) so that
the console is not forced to perform polling as in
SNMP/RMON systems.

0 Alarms: Threshold-based alarms can be pro-
grammed in each probe. Available alarms are
global network utilization exceeding a threshold,
host network usage percentage exceeding a thresh-
old and broadcast storms detection.

Real-time parameters, traffic captures and alarms
may have global scope (WAN segment) or filters. Pre-
defined filters allow for a detailed monitoring of a spe-
cific service, application or host. Filters are listed in
table 1.

machine I
protocol I

IP or MAC address
TCP, UDP, ICMP, ARP

Table 1. PROMIS filters

On the other hand, filters can be programmed man-
ually using the IP protocol number or the TCP/UDP
port.

4. PROMIS components: probe and con-
sole

PROMIS probes should have good storage capabili-
ties and processing power while keeping cost at a min-
imum. We use PCs as probes since they also pro-
vide a great flexibility for data capture. Such PCS
run PROMIS software concurrently with other applica-
tions, so that a dedicated use of the P C as a PROMIS
probe is not necessary.

583

In order to achieve greater flexibility we design mul-
tiplatform consoles, namely WWW or Tcl/Tk-based
consoles. We will show that a PC suffices to provide
a traffic capture with minimum loss, thus providing a
cost-effective solution for probes. As far as the console
is concerned we do not tight such functionality to a
particular workstation so that any PC or workstation
may serve as PROMIS console at any time. On the
other hand, more than one PROMIS console can be
active simultaneously.

Java and Tcl/Tk make intensive use of CPU re-
sources and give worse performance in comparison to
compiled languages, such as C. We compare Java to
Tcl/Tk for traffic monitoring applications in the fol-
lowing subsections.

4.1. Probe

Probes are implemented on a PC Pentium 133 MHz,
32MB RAM, 1.5GB of hard disk and Ethernet board
3COM 3 ~ 5 0 9 ISA. The operating system is Linux
Slackware 3.2. Since real-time monitoring is pursued
we need to follow a multiprocess architecture for probe
software. The traffic collection program is composed
by 3 processes that run concurrently. Such processes
exchange messages using Interprocess Communication
(IPC) mechanisms. A block diagram of the program is
presented in figure 2.

Figure 2. Probe block diagram

The reader process is in charge of capturing all MAC
packets from the Ethernet network along with gener-
ating a timestamp for each of them. To do so, the
Ethernet board is configured in promiscuous mode.

The filter process performs packet identification, us-
ing source and destination MAC address, packet size,
protocol number, source and destination IP address
and application. It also processes the alarms and cap-
tures.

Since different real-time measurement request can
be issued to a particular probe, the request manager
process forks a process per request. Therefore, several
requests for traffic captures or real-time monitoring pa-
rameters can be attended concurrently, as seen in figure
n
3.

A key issue in network monitoring equipment is IPC.
Note that the reader process is sending traffic in real-
time to the filter process. Therefore, a poor through-

'// CONSOLE

-$cy Alarms

PROBE

Figure 3. Filter process

put in the IPC mechanism implies possible packet loss.
IPC mechanisms can be grouped as follows, considering
consumer and producer processes:

e Message queues: Consumer and producer run in
separate address spaces so that message passing is
performed through kernel memory. This implies
several copies that make IPC performance drop.

e Shared memory: Both process reader and fil-
ter run in the same address space so that they
may exchange information in a very efficient man-
ner. However, some means of synchronization
need to be used. The operating system provides
semaphores to do so. A system call to a semaphore
means processing delay, so that there is a trade-off
between synchronization delay and copies in kernel
memory.

Message queues, such as System V pipes, are eas-
ier to use since they rely on the operating system ker-
nel to perform message passing. Shared memory im-
plies incorporating concurrency control to user soft-
ware. Deadlock situations may arise if a careful de-
sign is not undertaken. However, there is an additional
delay due to copies in kernel space. We evaluate mes-
sage throughput through kernel space for the probe
PC using two different versions of the Linux operating
system: Slackware 3.2 and Red Hat 4.1. Results are
shown in figure 4.

We observe from figure 4 that the sustained through-
put is around 400 Mbps using System V pipes. The

584

Figure 4. IPC performance

important conclusicln is that IPC mechanisms based
on message queues can be used for network monitor-
ing purposes in 100 Mbps environments using simple
hardware such as F'Cs. The use of System V pipes
simplifies software design while it provides a high reli-
ability in process synchronization, therefore we adopt
such IPC mechanism for our design.

4.2. Console

We evaluate two 'different options regarding console
design: WWW (Java applets) and Tcl/Tk. Both of
them allow for a multiplatform design at the expense
of a higher processing cost.

4.2.1 WWW (J a v a applet) console

The monitoring information resides in the probe web
pages that can be either static or dynamic generated
by CGIs [3]. Real-time monitoring presents a challenge
since traffic display graphics need to be recalculated
and redrawn in real-time. This is CPU consuming and
may lead to overload of console resources.

Communication lietween probe and console is al-
ways performed using TCP/IP and HTTP between
server and client, thiis providing connection reliability.
On the other hand sockets (SOCKSTREAM) between
console Java applets and probe are used.

The use of WWW technologies has the advantage
of information accessibility. Any host in the Internet
with a WWW browser with Java support is ready to
access monitoring information, which is served by the
probes.

On the other hand, Java applets present several dis-
advantages in order to notify alarms to the console. A

Java applet needs to be in continuous execution in the
console side in order to attend possible alarm triggers
from the probe. A preferred solution is to store alarms
in the probe side and serve them on demand. How-
ever, this limitation can be overcame using a Tcl/Tk
console, that we describe in the following section.

4.2.2 Tcl/Tk console

Tcl/Tk allows to program and ad-hoc console for
PROMIS while keeping the multiplatform objective.
It is portable to a number of platforms such as UNIX
systems, Linux, Windows%, WindowsNT, OS/2 and
Macintosh. On the other hand it offers more flexibility
as far as statistics storage in the console. Java does not
permit any access to hard disk due to security reasons.
Moreover, alarms can be transmitted inmediately from
probe to console.

The application is composed by a principal console
window, in which the monitored network appears as a
sensitive map with the location of each probe. Figure
5 presents the interface aspect.

Figure 5. Tcl/Tk interface

Figure 6 presents a real time monitoring graphic of
network global bytes per second. Note that all traffic
peaks have been detected with zero loss, since TCP is
used for transmission. Therefore we get an accurate
picture of network activity.

As stated before, the main advantage of Tcl/Tk is
that the console can run in autonomous manner and
it provides client and server functionality. An alarm
server is running continuously in the console side so
that probes can open connections (SOCKSTREAM)
and send alarm information. This is clearly impossible
in WWW-based implementations, unless a Java-applet

585

I I

Figure 6. Real-time monitoring example

is running continuously in the console side.
As the main disadvantage, the console software

has to be installed in a particular hardware platform.
Therefore, there is a trade-off between WWW univer-
sality and Tcl/Tk functionality.

Furthermore, performance for real-time monitoring
is an important issue. A performance comparison be-
tween Tcl/Tk and WWW is done in the next subsec-
tion.

4.2.3 Performance comparison

We evaluate performance of Tcl/Tk versus Java. The
key issue for network monitoring purposes is real-time
graphics display capabilities. We code a simple algo-
rithm that generates a plot such as the one shown in
figure 6 and compare CPU occupation for Tcl/Tk and
Java. The algorithm pseudocode is as follows:

while(true1 C
plot a box with a random amplitude each
second;
rescale the graphic;

1

CPU occupation is measured using the UNIX wmstat
tool in an Axil Ultima Sparc Station (167 MHz, 128
MB RAM). Results are shown in figure 7.

Interestingly, Java outperforms Tcl/Tk in CPU effi-
ciency. This is due to the bytecode generation in Java
language. Such bytecode is an intermediate step to
generate machine-dependent code. Therefore, program
interpretation is more efficient.

5 . Performance evaluation

In order to evaluate PROMIS performance we arti-
ficially load an Ethernet network with file transfers be-
tween two hosts and perform network measurements.

I
0 50 100 150 200 250 300 350 400

nme (sec)

Figure 7. Performance comparison TclKk ver-
sus Java

We would like to evaluate PROMIS capabilities in com-
parison to SNMP/RMON based systems, which do not
provide reliability in transport of monitoring informa-
tion.

Figure 8 shows the results of real-time network mea-
surements using PROMIS. Note that y-axis units are
bytes per second. Ethernet throughput is around 8
Mbps, namely, the maximum utilization taking into
account network interface card limitations. We do not
detect any information loss from probe to manager,
therefore the congestion period is displayed in the con-
sole accurately. The measurement step is one second,
i. e. the probe is updating the console graphics display
each second in real-time.

Global parameters - Bytedses I

Figure 8. Performance evaluation of an over-
loaded network

On the other hand we perform the same experiment
using UDP as transport protocol. We emulate SNMP

586

polling by sending ICMP ECHO packets of variable
length from console to probe. We use two different
hosts as console, both Sparc station with 10/100 Mbps
high-performance network interface cards. The follow-
ing figures are obtained using 70 series of 100 pings
that are interleaved one second, for different type of
network and different network utilization. The per-
centage of packet 101,s is averaged for each packet size.

In figure 9 appears the packet loss in the Local
Area Network (LAN) and in a Campus Area Network
(CAN), in both cases the LAN is overloaded to 80%
utilization. Approx:imately the 7% of packets trans-
mitted through the CAN are lost. With an unloaded
LAN the loss would be negligible in both cases.

20

10

ICMP Packet Loss

LOCAL AREA NETWORK -
CAMPUS AREA NETWORK -+-

-

- 200 400 600 800 1000 1200 1400
Packet size (bytes)

Figure 9. Packet loss in LAN and CAN

Worse results should be expected in a Wide Area
Network (WAN) with several congested routers in the
path from console to probe. We perform the UDP
packet transmission experiment on the Spanish aca-
demic network (see http://www. rediris. es/red/#mapa
red). UDP packets are transmitted between a host in
our university and a host located in Technical Univer-
sity of Madrid. The total number of hops in the static
route between source and destination is 5 (4 routers).
Figure 10 shows packet loss in such WAN with loaded
and unloaded access LAN. Even though LAN utiliza-
tion is SO%, mean pxket loss is around 3%, since the
bottleneck link is not in the access segment but in WAN
routers, whose load is not significant. In both cases,
loss increases with packet size as expected.

Finally, we evalu&e packet loss over the Internet
(transmission between our university host and an In-
ternet Service Provl der proxy), taking into account
time periods. Peak hours in the Internet take place
at noon (companies and universities) and evening (pri-
vate users). Results itre shown in figure ll. Packet loss

ICMP Packet Los8
10

,,* WIDE AREA NETWORK wilh unloaded LAN +
WIDE AREA NETWORK wilh loaded LAN +- ,+-A...+/ \ ~ \

8 -

0 200 400 600 800 1000 1200 1400
Packet size (bytes)

Figure 10. Packet loss in WAN

iCMP Packet Loss
B o , I

internet w o h c
Internet t220h +-
Internet 2O:OOh 0

01 I
0 200 400 600 800 1000 1200 1400

Packet si28 (bytes)

Figure 11. Packet loss over Internet

increases with packet size up to 70%, which is clearly
unacceptable. The total number of hops in the static
route between source and destination is 7 (6 routers).
Internet bottlenecks have a dramatic effect on packet
loss. As a result, the use of SNMP for network moni-
toring in the Internet scenario implies an unacceptable
management information loss.

6. Conclusions

Current wide area networks are evolving to a high-
speed scenario in which network monitoring has to be
performed with higher granularity and reliability. The
SNMP/RMON-based tools have not been designed for
such environments since they use a non-reliable trans-
port protocol and polling schemes for information re-
covery. On the other hand, current SNMP/RMON-
based implementations are not prepared to provide suf-

587

http://www

ficient resolution in network measurements. We have
presented the PROMIS tool, that overcomes the above-
mentioned limitations using a reliable transport proto-
col and an optimized software architecture for perfor-
mance. Furthermore, PROMIS provides a WWW and
Tcl/Tk console, thus allowing for distributed network
management in real-time.

References

[l] D. Case, M. Fedor, M. L. Schoffstall, and C. Davin.
Simple network management protoco1,RFC 1157. 1990.

[2] M. E. Crovella and A. Bestavros. Self-similarity in
world wide web traffic: Evidence and possib le causes.
In AGM SIGMETRICS Annual Conference on Mea-
surement and Modeling o f Computer Systems, May
1996.

[3] E. Kim. CGIs Developer’s Guide. SamsNet, 1996.
[4] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V.

Wilson. On the self-similar nature of Ethernet traf-
fic. IEEE/ACM Transactions on Networking, 2(1):1-
15, January 1994.

[5] K. McCloghrie and M. T. Rose. Management informa-
tion base for network management of TCP/IP-based
internets: MIB-11, RFC 1213. 1991.

[6] E. Mier. Network world, bell labs evaluate SNMP on
bridges. Network World, April 1991.

[7] E. Mier. Network world, bell labs test routers’ SNMP
agents. Network World, July 1991.

[8] V. Paxson and S. Floyd. Wide area traffic: The fail-
ure of Poisson modeling. IEEE/ACM Transactions on
Networking, 4(2):226-244, April 1996.

[9] S. Waldbusser. Remote network monitoring manage-
ment information base, RFC 1757. 1990.

588

