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Abstract 

This paper presents the PROMIS  tool, a new net- 
work management Loo1 based on  a distributed archi- 
tecture of t ra f ic  pmbes. PROMIS  allows authorized 
users to monitor trafic f rom any W A N  segment us- 
ing a WWW console or a Tcl/Tk graphic interface. 
In contrast to current network monitoring platforms 
based in S N M P  (Simple Network Management Proto- 
col) or R M O N  (Remote network MONitor), PROMIS  
is based on  an  optimized software architecture that uses 
a reliable transport protocol ( T C P )  to provide lossless 
transmision of monitoring information, thus allowing 
for real-time monitoring irrespective of network load. 

1. Introduction 

Nowadays, we are witnessing a huge demand for 
client-server applications that require a guaranteed 
Quality of Service (QOS) from the network. In order 
to  provide such &OS it is necessary to monitor network 
traffic so that preventive actions can take place before 
network congestion is detected. This implies the use 
of network monitoring tools that allow network man- 
agers to  have a global view of the whole network from 
a single, centralized location. 

Such network monitoring tools should provide a 
good granularity in traffic measurements in order to  
obtain an accurate picture of the network in real-time. 
Other desirable features are alarm programming capa- 
bilities and automatic detection of network failures. 

Furthermore, traffic capture capabilities are also 
convenient in order to analyze network performance 
during a period of time. A packet-level capture is ad- 
equate to  perform t race-driven simulations, that prove 

useful for network dimensioning purposes. On the 
other hand, traffic filters for both real-time and non 
real-time measurements should be available in order to 
have a detailed view of protocols, applications or spe- 
cific hosts. 

Recent measurements of LAN and WAN traffic show 
that Internet traffic presents self-similar features [4, 81. 
Namely, the observed traffic presents the scaling prop- 
erty: no matter the time scale that we consider the 
normalized packet counting process looks the same in 
a distributional sense. Traffic burstiness is present at 
any time scale in contrast to the Poisson process which 
tends to smooth out with increasing time scales. 

Such high variability in network traffic makes 
SNMP/RMON management platforms vulnerable 
since both alarms and data can be lost in congestion 
periods. Such potential data loss is due to the unreli- 
able nature of the transport protocol (UDP) used by 
SNMP/RMON and the polling scheme from manager 
to agent. Neither requests nor alarms are confirmed by 
SNMP, whose design criteria responds for non real-time 
purposes. Congestion periods are interesting from a 
network management perspective since they determine 
network performance. Therefore, accuracy in traffic 
monitoring is needed specially during network conges- 
tion stages. In a 100 Mbps network a burst congestion 
period of 1 second implies the loss of about 100 Mb 
of data. Recent studies [2] show that the HTML page 
mean size is around 50 KB, therefore 250 HTML pages 
may be lost. This is a quite simplistic example which 
illustrates that the more network capacity, the more 
resolution in traffic measurement is needed. 

This paper presents the architecture and functions of 
a new network monitoring tool, PROMIS, that offers a 
true real time traffic parameters monitoring. PROMIS 
gives the typical functionalities of a SNMP/RMON 
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management system, but a higher reliability is pro- 
vided by means of using a reliable transport protocol 
and an optimized software architecture for traffic man- 
agement. 

The rest of this paper is structured as follows: sec- 
tion 2 presents the state of art in traffic monitor- 
ing tools and section 3 presents PROMIS architec- 
ture. Section 4 is devoted to an in-depth description of 
PROMIS probe and console. We evaluate PROMIS us- 
ing stress tests in section 5. Finally, section 6 presents 
the conclusions that can be drawn from this study. 

2. State of art 

Current network monitoring tools can be grouped 
as follows: 

0 Protocol analyzers or sniffers: sniffers are normally 
implemented on a portable PC platform so that 
the network operator can monitor traffic on a given 
link. Sniffers provide good granularity and limited 
traffic capture capabilities but they do not give a 
global view of the network. 

0 Management tools based in RMON: such tools 
provide a centralized console and RMON probes 
from which traffic statistics are collected. We will 
show later that such platforms are not adequate 
for real-time traffic monitoring. 

Protocol analyzers are hardware/software dedicated 
systems that allow traffic monitoring of network seg- 
ments. However, the analysis scope is limited to a 
single collision domain. Thus, a global view of the 
network is lost. Furthermore, they do not allow for 
continuous network control nor for a,larm generation 
or significant traffic captures. Therefore they are not 
suited for network management purposes but to solve 
isolated problems. Proactive network maintenance re- 
lies on the use of network management tools that pro- 
vide an early warning of trouble by notifying managers 
of deviations from normal behaviour patterns. This 
objective cannot be achieved with the use of protocol 
analyzers. 

The SNMP/RMON management platforms ( H P  
Openview, SunNet  Manager, IBM Netview and Ca- 
bletron Spectrum) provide a global view of all WAN 
segments. Either the network active elements (bridges, 
routers and switches) or dedicated hardware probes 
have SNMP (Simple Network Management Protocol) 
[l] and RMON (Remote network MONitor) [9] probes 
in charge of gathering traffic information. 

The SNMP protocol is based on a polling scheme 
from manager to  agent. In order to monitor a given 

network parameter the manager sets the adequate val- 
ues in the agent control tables. On the other hand, the 
agent can deliver information to  the manager by means 
of a trap. Even though MIB-I1 [5] parameters are 
too generic (for example, accumulative bytes or pack- 
ets), the RMON standard defines a MIB that supports 
significant information regarding traffic management: 
segment statistics, historic data, alarms, filtering capa- 
bilities per host, traffic between machines, top traffic 
machines, events, filters and packets captures. 

The SNMP/RMON standards present the following 
disadvantages regarding traffic monitoring: 

0 Polling is CPU intensive in the manager since it 
has to keep track of the different polling inter- 
vals for different parameters. Furthermore, in long 
round-trip delay environments polling is unpracti- 
cal and limits real-time features. 

0 Since UDP is used as transport protocol, neither 
alarm transmissions from agent to  manager nor 
requests from manager to agent are guaranteed. 

0 In highly loaded environments real time traffic 
monitoring is limited because manager requests 
and agent replies can be lost. Note that a con- 
gested situation is most interesting from a network 
management perspective. In such situation valu- 
able management information can be lost. 

0 Remote monitoring is not possible through the In- 
ternet since a request/reply scheme with unreli- 
able transport is unrealistic. 

0 Capture size is normally limited by probe or net- 
work active element RAM memory. 

Such disadvantages have been studied previously 
in the literature [6, 71. PROMIS tries to overcome 
the above mentioned limitations by using a reliable 
transport protocol and an optimized software architec- 
ture to minimize information loss. Thus, it enhances 
SNMP/RMON functionality by adding reliability and 
real-time monitoring capabilities. 

3. PROMIS Architecture 

PROMIS components are console and probe. Sev- 
eral consoles can be active simultaneously on different 
machines. Probes are placed in each network segment 
to be monitored and they serve real-time traffic infor- 
mation as a WWW server would do. Therefore they 
provide a truly distributed environment so that traffic 
information can be accesed reliably from any host in 
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WIDE AREA NETWORK 
" S O L E  

Figure 1. Netwwk management scenario us- 
ing PROMIS 

the Internet. Figure 1 presents a network management 
scenario using PROMIS. 

Traffic collection and processing is performed in the 
probe in order to guarantee that a minimum amount 
of information trafFic to the console is transmitted 
through the network. PROMIS incorporates the fol- 
lowing features: 

0 A variety of network performance parameters are 
monitored in real-time, ranging from global statis- 
tics (bytes/sec, packets/sec and mean utilization) 
to statistics filtered by machine, protocol, service 
and application. 

0 Alarms can be generated from any probe to the 
console. 

0 An expert system for automatic detection of net- 
work failures is provided, based on ICMP and a 
set of rules programmed by the network manager. 

0 Traffic capture capabilities are also provided. 

0 PROMIS probe incorporates an SNMP manager 
for communication with network active elements. 

0 PROMIS learns network topology in a continuous 
fashion through consultation of router tables using 
SNMP. 

PROMIS probes use SNMP to access router tables 
in order to obtain the IP and MAC address of the seg- 
ment hosts. A data,base is kept with all the necessary 
information to  send real-time statistics and perform 
traffic captures on demand. PROMIS options can be 
outlined as follows: 

0 Monitor mode: In monitor mode the console re- 
ceives traffic parameters in real-time and prob- 
lem symptoms detected by the expert system. 
Such traffic parameters include bytes per second, 
packets per second and percentage over total ob- 
served traffic of the following services: FTP, Tel- 
net, SMTP, WWW, POP2, POP3 and TALK. 
Futhermore, the same statistics are available for 
the following protocols: TCP, UDP, ICMP, ARP, 
AppleTalk(2 versions), IPX and NetBios. Any 
other protocol on top of IP can also be monitored. 

0 Capture mode: This mode allows to program a 
capture of the required traffic parameter speci- 
fying the desired time interval. Capture data 
is stored in probe hard disk (1.5 GB) so that 
the console is not forced to perform polling as in 
SNMP/RMON systems. 

0 Alarms: Threshold-based alarms can be pro- 
grammed in each probe. Available alarms are 
global network utilization exceeding a threshold, 
host network usage percentage exceeding a thresh- 
old and broadcast storms detection. 

Real-time parameters, traffic captures and alarms 
may have global scope (WAN segment) or filters. Pre- 
defined filters allow for a detailed monitoring of a spe- 
cific service, application or host. Filters are listed in 
table 1. 

machine I 
protocol I 

IP or MAC address 
TCP, UDP, ICMP, ARP 

Table 1. PROMIS filters 

On the other hand, filters can be programmed man- 
ually using the IP protocol number or the TCP/UDP 
port. 

4. PROMIS components: probe and con- 
sole 

PROMIS probes should have good storage capabili- 
ties and processing power while keeping cost at a min- 
imum. We use PCs as probes since they also pro- 
vide a great flexibility for data capture. Such PCS 
run PROMIS software concurrently with other applica- 
tions, so that a dedicated use of the P C  as a PROMIS 
probe is not necessary. 
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In order to  achieve greater flexibility we design mul- 
tiplatform consoles, namely WWW or Tcl/Tk-based 
consoles. We will show that a PC suffices to provide 
a traffic capture with minimum loss, thus providing a 
cost-effective solution for probes. As far as the console 
is concerned we do not tight such functionality to a 
particular workstation so that any PC or workstation 
may serve as PROMIS console at any time. On the 
other hand, more than one PROMIS console can be 
active simultaneously. 

Java and Tcl/Tk make intensive use of CPU re- 
sources and give worse performance in comparison to 
compiled languages, such as C. We compare Java to 
Tcl/Tk for traffic monitoring applications in the fol- 
lowing subsections. 

4.1. Probe 

Probes are implemented on a PC Pentium 133 MHz, 
32MB RAM, 1.5GB of hard disk and Ethernet board 
3COM 3 ~ 5 0 9  ISA. The operating system is Linux 
Slackware 3.2. Since real-time monitoring is pursued 
we need to follow a multiprocess architecture for probe 
software. The traffic collection program is composed 
by 3 processes that run concurrently. Such processes 
exchange messages using Interprocess Communication 
(IPC) mechanisms. A block diagram of the program is 
presented in figure 2. 

Figure 2. Probe block diagram 

The reader process is in charge of capturing all MAC 
packets from the Ethernet network along with gener- 
ating a timestamp for each of them. To do so, the 
Ethernet board is configured in promiscuous mode. 

The filter process performs packet identification, us- 
ing source and destination MAC address, packet size, 
protocol number, source and destination IP address 
and application. It also processes the alarms and cap- 
tures. 

Since different real-time measurement request can 
be issued to  a particular probe, the request manager 
process forks a process per request. Therefore, several 
requests for traffic captures or real-time monitoring pa- 
rameters can be attended concurrently, as seen in figure 
n 
3. 

A key issue in network monitoring equipment is IPC. 
Note that the reader process is sending traffic in real- 
time to  the filter process. Therefore, a poor through- 

'// CONSOLE 

-$cy Alarms 

PROBE 

Figure 3. Filter process 

put in the IPC mechanism implies possible packet loss. 
IPC mechanisms can be grouped as follows, considering 
consumer and producer processes: 

e Message queues: Consumer and producer run in 
separate address spaces so that message passing is 
performed through kernel memory. This implies 
several copies that make IPC performance drop. 

e Shared memory: Both process reader and fil- 
ter run in the same address space so that they 
may exchange information in a very efficient man- 
ner. However, some means of synchronization 
need to be used. The operating system provides 
semaphores to do so. A system call to a semaphore 
means processing delay, so that there is a trade-off 
between synchronization delay and copies in kernel 
memory. 

Message queues, such as System V pipes, are eas- 
ier to use since they rely on the operating system ker- 
nel to perform message passing. Shared memory im- 
plies incorporating concurrency control to user soft- 
ware. Deadlock situations may arise if a careful de- 
sign is not undertaken. However, there is an additional 
delay due to copies in kernel space. We evaluate mes- 
sage throughput through kernel space for the probe 
PC using two different versions of the Linux operating 
system: Slackware 3.2 and Red Hat 4.1. Results are 
shown in figure 4. 

We observe from figure 4 that the sustained through- 
put is around 400 Mbps using System V pipes. The 
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Figure 4. IPC performance 

important conclusicln is that IPC mechanisms based 
on message queues can be used for network monitor- 
ing purposes in 100 Mbps environments using simple 
hardware such as F'Cs. The use of System V pipes 
simplifies software design while it provides a high reli- 
ability in process synchronization, therefore we adopt 
such IPC mechanism for our design. 

4.2. Console 

We evaluate two 'different options regarding console 
design: WWW (Java applets) and Tcl/Tk. Both of 
them allow for a multiplatform design at the expense 
of a higher processing cost. 

4.2.1 WWW ( J a v a  applet) console 

The monitoring information resides in the probe web 
pages that can be either static or dynamic generated 
by CGIs [3]. Real-time monitoring presents a challenge 
since traffic display graphics need to  be recalculated 
and redrawn in real-time. This is CPU consuming and 
may lead to overload of console resources. 

Communication lietween probe and console is al- 
ways performed using TCP/IP and HTTP between 
server and client, thiis providing connection reliability. 
On the other hand sockets (SOCKSTREAM) between 
console Java applets and probe are used. 

The use of WWW technologies has the advantage 
of information accessibility. Any host in the Internet 
with a WWW browser with Java support is ready to 
access monitoring information, which is served by the 
probes. 

On the other hand, Java applets present several dis- 
advantages in order to notify alarms to the console. A 

Java applet needs to be in continuous execution in the 
console side in order to attend possible alarm triggers 
from the probe. A preferred solution is to store alarms 
in the probe side and serve them on demand. How- 
ever, this limitation can be overcame using a Tcl/Tk 
console, that we describe in the following section. 

4.2.2 Tcl/Tk console 

Tcl/Tk allows to program and ad-hoc console for 
PROMIS while keeping the multiplatform objective. 
It is portable to a number of platforms such as UNIX 
systems, Linux, Windows%, WindowsNT, OS/2 and 
Macintosh. On the other hand it offers more flexibility 
as far as statistics storage in the console. Java does not 
permit any access to hard disk due to  security reasons. 
Moreover, alarms can be transmitted inmediately from 
probe to console. 

The application is composed by a principal console 
window, in which the monitored network appears as a 
sensitive map with the location of each probe. Figure 
5 presents the interface aspect. 

Figure 5. Tcl/Tk interface 

Figure 6 presents a real time monitoring graphic of 
network global bytes per second. Note that all traffic 
peaks have been detected with zero loss, since TCP is 
used for transmission. Therefore we get an accurate 
picture of network activity. 

As stated before, the main advantage of Tcl/Tk is 
that the console can run in autonomous manner and 
it provides client and server functionality. An alarm 
server is running continuously in the console side so 
that probes can open connections (SOCKSTREAM) 
and send alarm information. This is clearly impossible 
in WWW-based implementations, unless a Java-applet 
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Figure 6. Real-time monitoring example 

is running continuously in the console side. 
As the main disadvantage, the console software 

has to be installed in a particular hardware platform. 
Therefore, there is a trade-off between WWW univer- 
sality and Tcl/Tk functionality. 

Furthermore, performance for real-time monitoring 
is an important issue. A performance comparison be- 
tween Tcl/Tk and WWW is done in the next subsec- 
tion. 

4.2.3 Performance comparison 

We evaluate performance of Tcl/Tk versus Java. The 
key issue for network monitoring purposes is real-time 
graphics display capabilities. We code a simple algo- 
rithm that generates a plot such as the one shown in 
figure 6 and compare CPU occupation for Tcl/Tk and 
Java. The algorithm pseudocode is as follows: 

while(true1 C 
plot a box with a random amplitude each 
second; 
rescale the graphic; 

1 

CPU occupation is measured using the UNIX wmstat 
tool in an Axil Ultima Sparc Station (167 MHz, 128 
MB RAM). Results are shown in figure 7. 

Interestingly, Java outperforms Tcl/Tk in CPU effi- 
ciency. This is due to the bytecode generation in Java 
language. Such bytecode is an intermediate step to 
generate machine-dependent code. Therefore, program 
interpretation is more efficient. 

5 .  Performance evaluation 

In order to evaluate PROMIS performance we arti- 
ficially load an Ethernet network with file transfers be- 
tween two hosts and perform network measurements. 

I 
0 50 100 150 200 250 300 350 400 

nme (sec) 

Figure 7. Performance comparison TclKk ver- 
sus Java 

We would like to evaluate PROMIS capabilities in com- 
parison to SNMP/RMON based systems, which do not 
provide reliability in transport of monitoring informa- 
tion. 

Figure 8 shows the results of real-time network mea- 
surements using PROMIS. Note that y-axis units are 
bytes per second. Ethernet throughput is around 8 
Mbps, namely, the maximum utilization taking into 
account network interface card limitations. We do not 
detect any information loss from probe to manager, 
therefore the congestion period is displayed in the con- 
sole accurately. The measurement step is one second, 
i. e. the probe is updating the console graphics display 
each second in real-time. 

Global parameters - Bytedses I 

Figure 8. Performance evaluation of an over- 
loaded network 

On the other hand we perform the same experiment 
using UDP as transport protocol. We emulate SNMP 
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polling by sending ICMP ECHO packets of variable 
length from console to probe. We use two different 
hosts as console, both Sparc station with 10/100 Mbps 
high-performance network interface cards. The follow- 
ing figures are obtained using 70 series of 100 pings 
that are interleaved one second, for different type of 
network and different network utilization. The per- 
centage of packet 101,s is averaged for each packet size. 

In figure 9 appears the packet loss in the Local 
Area Network (LAN) and in a Campus Area Network 
(CAN), in both cases the LAN is overloaded to 80% 
utilization. Approx:imately the 7% of packets trans- 
mitted through the CAN are lost. With an unloaded 
LAN the loss would be negligible in both cases. 

20 

10 

ICMP Packet Loss 

LOCAL AREA NETWORK - 
CAMPUS AREA NETWORK -+- 

- 

- 200 400 600 800 1000 1200 1400 
Packet size (bytes) 

Figure 9. Packet loss in LAN and CAN 

Worse results should be expected in a Wide Area 
Network (WAN) with several congested routers in the 
path from console to probe. We perform the UDP 
packet transmission experiment on the Spanish aca- 
demic network (see http://www. rediris. es/red/#mapa 
red). UDP packets are transmitted between a host in 
our university and a host located in Technical Univer- 
sity of Madrid. The total number of hops in the static 
route between source and destination is 5 (4 routers). 
Figure 10 shows packet loss in such WAN with loaded 
and unloaded access LAN. Even though LAN utiliza- 
tion is SO%, mean pxket  loss is around 3%, since the 
bottleneck link is not in the access segment but in WAN 
routers, whose load is not significant. In both cases, 
loss increases with packet size as expected. 

Finally, we evalu&e packet loss over the Internet 
(transmission between our university host and an In- 
ternet Service Provl der proxy), taking into account 
time periods. Peak hours in the Internet take place 
at noon (companies and universities) and evening (pri- 
vate users). Results itre shown in figure ll. Packet loss 

ICMP Packet Los8 
10 

,,* WIDE AREA NETWORK wilh unloaded LAN + 
WIDE AREA NETWORK wilh loaded LAN +- ,+-A...+/ \ ~ \  

8 -  

0 200 400 600 800 1000 1200 1400 
Packet size (bytes) 

Figure 10. Packet loss in WAN 
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Figure 11. Packet loss over Internet 

increases with packet size up to 70%, which is clearly 
unacceptable. The total number of hops in the static 
route between source and destination is 7 (6 routers). 
Internet bottlenecks have a dramatic effect on packet 
loss. As a result, the use of SNMP for network moni- 
toring in the Internet scenario implies an unacceptable 
management information loss. 

6. Conclusions 

Current wide area networks are evolving to a high- 
speed scenario in which network monitoring has to be 
performed with higher granularity and reliability. The 
SNMP/RMON-based tools have not been designed for 
such environments since they use a non-reliable trans- 
port protocol and polling schemes for information re- 
covery. On the other hand, current SNMP/RMON- 
based implementations are not prepared to provide suf- 
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ficient resolution in network measurements. We have 
presented the PROMIS tool, that overcomes the above- 
mentioned limitations using a reliable transport proto- 
col and an optimized software architecture for perfor- 
mance. Furthermore, PROMIS provides a WWW and 
Tcl/Tk console, thus allowing for distributed network 
management in real-time. 
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