

Effect of the Generation of MPEG-Frames within a GOP on Queueing Performance

J.C. Lopez Ardao, M. Fernandez Veiga, R.F rodriguez Rubio, C. Lopez Garcia, A. Suarez Gonzalez and D. Teijeiro Ruiz University of Vigo

LNCS 2869/2003

GoP

- Group of Pictures
- Around 1/2 sec each GoP
- Order
 - Presentation
 IBBPBBPBBPBB ibbpbb...
 - Codification
 Ej.: I bb PBBPBBPBB i BB pbb...
- Closed or Open GoP
- Broken GoP: lack of previous GoP

	I frame	P frame	B frame
Compression Ratio	Low	Good	Best
Random Access	Best	Hard	Hardest
Complexity	Normal	High	Highest

^{up}Na Video Traffic - Frame based

- Autocorrelation of frame-size process
- Periodic coding due to the GOP structure
- Complex to model

Video Traffic - GOP based

- Non exponential decay ACF
- Long-range dependence
- Loss of detail in lower scales (below GOP)

Objective

- This paper compares the frame-level models and their impact on queueing performance
- Most video models do not generate below the GOP-level

Models in the literature

- Hierarchical
 - Scene/activity level
 - Time-scale of minutes
 - Change of the mean bit-rate (camera cuts)
 - GOP/frame level
 - Time-scale of milliseconds/seconds
 - Scene layer adds complexity
 - Subjective component in scene detection
- Non-hierarchical
 - Only GOP/frame level
 - Must incorporate a wide range of time-scales
 - Markovian, AR, Self-similar

^{up} Generating Frames within GOP

Solution HUA (1995)

- Background LRD process
- Matches the ACF of I-frames (inter-GOP correlation)
- Distribution transformation for each frame type (I, P and B)

HUA: LRD, h_I h_B h_P

^{up} Generating Frames within GOP

Solution KRU (1997)

- Hierarchical
- Inter-GOP correlation only for the I-frames process generation
- P- and B- frames as i.i.d. with Lognormal distribution

HUA: LRD, h_I h_B h_P KRU: LRD, iid P and B

upna Generating Frames within GOP

Solution ROS (1997)

- GOP-size process
- Frame sizes by multiplying GOP size by a scaling factor
- Scaling factor = mean frame size / mean GOP size

HUA: LRD, h_I h_B h_P KRU: LRD, iid P and B ROS: Markov in Markov + factor

^{up} Generating Frames within GOP

Solution ANS (2002)

• Three independent processes matching the ACFs of I-, P- and B- frames

Performance measures

- Loss probability
- Mean delay
- Jitter
- They are supposed to have used several traces
- They only mention *The Simpsons* trace
- GOP G12B2, 40.000 frames

Loss Probability

Loss Probability

• GOP-size process is dominant for loss performance

Mean Delay

- ROS the best, followed by ANS
- KRU out of range

Mean Delay

- ROS and ANS get worse as the buffer size increases
- HUA improves as buffer size increases

Jitter

- Most of the frames are P or B, • hence their modeling is important for jitter
- ANS is the best •
- ROS has no frame-by-frame • correlation (hence it underestimates jitter)
- KRU removes intra-GOP • correlation and autocorrelation of each frame-type
- HUA improves with larger buffer • size

Conclusions

- ROS best for loss rate and mean delay
 - Modeling GOP-size process
 - Simple modeling of intra-GOP structure
- For large buffers intra-GOP correlation dominates in mean delay
- For jitter adecuately characterizing ACF and PDF of B-frames is very important

Effect of the Generation of MPEG-Frames within a GOP on Queueing Performance

J.C. Lopez Ardao, M. Fernandez Veiga, R.F rodriguez Rubio, C. Lopez Garcia, A. Suarez Gonzalez and D. Teijeiro Ruiz University of Vigo

LNCS 2869/2003