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ABSTRACT

To exposenetwork characteristicsby active/passive measurements,measuring sometiming issuessuchasone-way delay,
one-way queuing delay, andinter-packet time is essential,andis conductedby time-stamping for packetspassingthrough
anobservationpoint. However, emerging high-speednetworks requirevery high precision of time-stamping, far beyond
theprecisionof conventionalsoftware-basedtime-stamping systemssuchas’ tcpdump’. For example, theinter-packet time
of two consecutive 64-byte lengthpacketson a giga-bit link canbe lessthan0.001 msec. In this paper, to demonstrate
theusefulnessandstrongnecessityof precisetime-stamping on high-speedlinks, experimentsof network measurements
over a nation-wide IPv6 testbedin Japanhave beenperformed,usinga hardware-basedtime-stampingsystemthat can
synchronizeto GPSwith a high resolutionof 0.0001 msecandwithin a smallerror of 0.0003 msec.In our experiments,
several interestingresultsareseen,e.g., i) the distribution of one-way queuing delayexhibits a considerabledifference
dependingonthesizeandthetype(UDP/ICMP)of packets;ii) theminimalone-waydelaysfor varioussizesof UDP/ICMP
packetsgive anaccurateestimateof the transmissiondelayandthe propagationdelay; iii) thecorrelationbetweeninter-
packet timesat the senderandthe receiver sidesin a sequenceof TCP ACK packetsclearly shows the degree of ACK
compression;iv) the inter-packet time in a UDP streamgeneratedby a DV streamingapplication shows threedominant
sendingratesanda very rarepeakrate,which might provide crucial informationto bandwidth dimensioning;all of which
would indicatetheusefulnessof precisetime-stamping.
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1. INTRODUCTION

Sincethe Internet hasalreadybecomean indispensableinfrastructure for socialandeconomic activities, it needsto be
operatedin a reliableandefficientway, andthusshouldbemeasurable in termsof its characteristics.Whatto bemeasured
would be classifiedinto two typesof characteristics:one is the quality (suchasperformance)of individual end-to-end
communicationsover anetwork, andtheotheris thecondition of thenetwork itself, whichincludeslocalstatesof network-
internal portionsandglobal behaviors of traffic flows over thenetwork. Knowledge of both typesof characteristicsis of
practicalimportancenot only for reliable,efficient andQoS-awarenetwork operations (in a staticor a dynamic way) but
alsofor researchanddevelopmentfor new network technologies,whichneedunderstandingthehidden natureof networks.

In orderto exposesuchnetwork characteristicsby activeand/orpassive measurements,measuringsometiming issues
suchasRTT (round-trip-time), one-way delay, one-way queuing delay, andinter-packet time (the time interval between
consecutive packetson a traffic flow) is essential,and is conducted by time-stamping, that is, recording the time of a
packetpassingthroughanobservation point with theheaderand/or contentsof thepacket (or someinformationto identify
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the packet). However, emerging high-speednetworks requirevery high precisionof time-stamping. For example, the
inter-packet time of two consecutive 64-byte lengthpacketson a giga-bit link canbe lessthan0.001 msec(about 0.0005
msec),andthemaximum queuing delayexperiencedata50-Kbyte (<�= packetsof >7=%=�= bytes)lengthoutput bufferonaten
giga-bit link is about 0.04msec,bothof which arefar beyondtheprecisionof conventionalsoftware-basedtime-stamping
systemssuchas’ tcpdump’.

Therearetwo kindsof errors in time-stamping. Oneis theerrorderived from theinaccuracy andimprecisionof clocks,
e.g., resolution, offset, skew, or drift. The other is the differencebetweenthe exact instanceof packet arriving andthe
instanceof referring andrecording thetime by theclock, thatis, processingdelayin a time-stamping system.Theimpact
of thoseerrors to thefinal resultsdependsonwhatwewould liketo measure: RTT, one-waydelay, one-wayqueuingdelay,
or inter-packet time. In fact,theone-way delayexperiencedon a pathfrom point A to point B is measuredasa difference
betweenthe time of a packet arriving at A by the clock of A andthe time of the packet arriving at B by the clock of B,
andthus,theabsolutevalueof measuredone-way delayis meaninglessunlesstheoffsetbetweentwo clocksis negligible.
To eliminatesuchanoffset, two clock should accurately synchronizeto somecommon precisetime sourcesuchasGPS
(Global Positioning System).On the otherhand, sinceone-way queuing delayfrom A to B is estimatedasa difference
betweentheeachvaluein measuredone-waydelaysfrom A to B andtheminimal value in them,accuracy of theestimation
strongly dependson theskew (anddrift) betweentwo clocksat A andB, regardlessof theclock offset.

In general, unfortunately, theconventionalsoftware-basedtime-stamping systemsuchas’ tcpdump’ onanoff-the-shelf
PC(whoseclock is usuallybasedon anunstablecrystaloscillator)would beinsufficient in accuracy of thetime-stamping
onhigh-speedlinks. Forexample,wepreviouslyevaluatedtheaccuracy of one-wayqueuing delaysmeasuredby ’ tcpdump’
(afterremoving clockskew betweentwo measurement PCsby somecalibrationalgorithm) by comparingwith theone-way
queuing delaysmeasuredby a hardware-basedpassive monitoring device having the time-stampingfunction by a very
stable(very little skewed)clock with =@? =�< msecresolution.A In the experiment,we found the errors in one-way queuing
delaysmeasuredby ’ tcpdump’ werelikely to be lessthan =@? B msec,which might comefrom the residual skew andthe
variation of processingdelaysin two PCs.

Weshouldnotethatsomestudyproposedanapproachto precisetime-stamping ontwo off-the-shelfPCswithoutGPS,
by usingahardwareregistercounting CPUcycles.C Thisapproach,however, focusesonaccuratelycalibratingclockskew,
but not clock offset. In addition, errorsfrom the variationof processingdelays in PCsstill remain. Someotherstudy
pointed out thelimitation of off-the-shelfPCbasedmeasurementsystemsfor network bandwidth estimation.D

In thispaper, therefore,to demonstratetheusefulnessandstrongnecessityof thehardware-basedprecisetime-stamping
on high-speedlinks conveying high-speedapplication traffic, experimentsof network measurements over a nation-wide
IPv6 testbedareconducted.We employ theHigh-speed IP Meter (HIM), a hardware-basedtime-stamping systemdevel-
opedby KDDI R&D Laboratories,Inc. andHitachi Ltd., which cansynchronizeto UTC (UniversalTime) by usingGPS
receiver with a high resolutionof 0.0001msec(100nano-sec)andwithin a smallerrorof 0.0003 msec.E A HIM captures
eachpacket (afterbeingfilteredby someconfigurablerules)onagiga-bit ethernet link, andsendsacopy of thepacketwith
a F�G -bit accuratetime-stampembeddedin a jumbo frameof ethernetto a storagePCconnectedvia ethernet.Furthermore,
if a HIM fails to synchronize to GPS,the de-synchronizing and re-synchronizing times will be recorded to ensurethe
integrity of the measured data. The storagePC storesthe packet information in the tcpdump-compatibleformat, which
allows usto employ tcpdump anda varietyof tcpdump-compatibletools in off-line visualizationandanalysis.For packet
capturing, a HIM canbe operatedeither in pass-through mode(in which the original packetspassingthrough the HIM
aremeasured) or in mirroring mode(in which the copiesof the original packets fed by a mirror port of a switch/router
aremeasured). Note that,preciselyspeaking,thetime-stampby HIM refers to thearrival time of the lastbit in a packet,
although somestandards (e.g.,RFC2679H ) requiretheability of time-stampreferring to thearrival timesof both thefirst
bit andthelastbit.

Several studieson network measurementsusingaccurateandprecisetime-stampinghave alreadybeenreported, es-
peciallyby usinga DAG measurementcard, which is a specialpurposenetwork interfacecard(NIC) with accuratetime-
stampingthatcansynchronizeto GPS.IKJKL For example, ahighly accuratepacketproving experimentwasconducted,which
wasappliedto bottleneck bandwidth estimationbasedonpreciseone-waydelaymeasurement.M Along this line, we report
our experimenton network characteristicsmeasurementsrequiring theprecisetime-stampingon an IPv6 environmentin
Japanasdescribedin Sect.2. Unlike thestudiespreviously reported,our focushereis on demonstratingtheusefulnessof
precisetime-stamping on high-speedlinks insteadof on developing aspecificmeasurementmethodfor aspecificnetwork
characteristic. Thus,our experimentsarecovering all of the threebasictypesof time-stamping relatedmeasurements,



i.e.,one-waydelay, one-wayqueuing delay, andinter-packet time,wheresomeinterestingresultsareseenasdescribedin
Section3. Finally Sect.4 concludesthis work.

2. MEASUREMENT ENVIRONMENT

To exposenetwork characteristicsby measuringsometiming issuessuchasone-way delay, one-way queuing delay, and
inter-packet time,we settletwo High-speedIP Meter(HIM) ongiga-bit ethernetlinks nearto bothends of apathbetween
observation points > (Kitakyushu)and N (Tokyo), which traversesa nation-wide IPv6 testbedon JGN (JapanGigabit
Network) O in Japan,

Figure1 shows the whole pathconfiguration. The pathconsistsof five high-performancecorerouters(Hitachi and
Juniper) andvarioushigh-speedlinks of 100base-TX, 1000 base-SX,OC-3/ATM, andOC-12/ATM, andis, ontheaverage,
lightly loaded by traffic in someotherexperimentson thetestbed.In thedetailedconfigurationsof two pointsillustrated
in the right-handside of Fig. 1, “Traffic Generator” is a PC for sending/receiving the targetedtraffic, on which ping6
command,iperf command P andDVTS Q (Digital VideoTransportSystem,an IEEE 1394digital-video formatstreaming
application) ASR arerunning. Observation point > and N arethe sender-sideandthe receiver-side,respectively. “IPmeter”
representsa main-component (which measuresthe targetedtraffic) of a HIM with GPSantenna anda storagePC asa
sub-component for storingthe measureddata. “TCPDUMP” meansa PC for performing “tcpdump” just to confirm the
(in)accuracy of time-stamping performedby tcpdump. In thenext section,however, we will omit showing theresultsof
tcpdump measurements.Theresultsdefinitely indicatethat tcpdump on anoff-the-shelfPCis not suitablefor measuring
timing issueson high-speedlinks, eventhough thePCis a high-performancePentiummachineoperatedby FreeBSDOS,
dueto theerrors thatmight bea 0.1msecorder.
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Figure 1. Pathconfigurationbetweentwo observationpoints.

We conduct threetypesof measurementsasfollows.

T Measuringone-waydelayfor varioussizesof UDPandICMP packetsby usingiperf commandfor sending/receiving
UDP packetsandping6 command for sending/receiving ICMP echopackets.Thearrival timesof eachUDP/ICMP
packetobservedby two HIMs atpoint > andpoint N aregathered,andtheone-waydelayof thepacket is calculated.
Fromthemeasured(absolute)one-waydelays,weestimateone-wayqueuingdelayasadifferencebetweentheeach
valuein measuredone-waydelaysandtheminimal valuein them.

U
http://www.jgn.nict.go.jp/english/index E.htmlV
http://dast.nlanr.net/Projects/Iperf/W
http://www.sfc.wide.ad.jp/DVTS/index.html



Notethata UDP packet consistsof G%= -byte IPv6 header(without any option), X -byte UDP header, andthepayload.
Similarly, an ICMP packet consistsof G%= -byte IPv6 header, X -byte ICMP header, and the payload. The payload
lengthvariesfrom >�=�= to >7G%=�= bytes.For UDP packets,while thestreamwith small >7=�= bytepayloadis sentat a
high rateof > Mb/s from point > to point N , thestreamswith otherpayloadsizesaresentat a moderaterateof >�=�=
Kb/s. For ICMP packets,oneechorequestpacket is sentper =Y?Z> sec(i.e., >�= pps)for >�=�=�= secondsandflies from
point > to point N , andthenthecorresponding echoreplypacketflies from point N to point > .

T Measuringinter-packet time for a bi-directionalTCP packet streamasan elasticdatatransfergeneratedby iperf
command. The IP packet sizeof the forward stream(the sequence of TCP datapackets)is mainly equalto >7G%X�X
bytes,while that of the backward stream(the sequenceof TCP ACK packetswithout data)is alwaysequalto F�=
bytes(G%= -byte IPv6header[,N%= -byte TCPheader).

T Measuringinter-packet time for a uni-directional UDP packet streamgeneratedby DVTS. TheIP packet sizeof the
streamis likely equal to >�B�<%G bytesbut sometimes<%G�= bytes.

3. EXPERIMENTAL RESULTS

3.1. One-way delay for UDP/ICMP packets

We show theresultsof one-way delaymeasurementsfor varioussizesof UDPandICMP packets.
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Figure 2. Survival distributionof one-way queuingdelayof UDPandEchorequest.



Table 1. Mean, standarddeviation,and ]^] -tile of one-way queuingdelayof UDPandEchorequestwith thebit andpacket rates.
size/ type bit rate[b/s] packet rate[pps] mean[msec] stdev [msec] 99-tile [msec]
148/udp 1050K 1300 0.0362 0.0432 0.239
148/icmp6 12K 10 0.0350 0.0386 0.140
548/udp 107K 27 0.0546 0.0743 0.410
548/icmp6 44K 10 0.0580 0.0882 0.478
948/udp 106K 15 0.0622 0.0845 0.433
948/icmp6 76K 10 0.0857 0.114 0.498
1448/udp 104K 9 0.0664 0.0892 0.436
1448/icmp6 116K 10 0.0860 0.111 0.494

First, thedistributionsof one-wayqueuing delaysareexamined.Thetop left, topright, bottom left, andbottomright of
Fig. 2 show thesurvival distributions of one-way queuing delayof UDP andICMP echorequestpacketswith payloadof
100, 500,900, and1400 bytes,respectively. Table1 shows themean,standarddeviation, and _�_ -percentile of theone-way
queuing delaywith thebit andpacket rates.Thoseresultsindicatethatthedistribution of one-wayqueuing delayexhibits
a considerabledifferencedepending on thesizeandthetype(UDP/ICMP)of packets.For example,we canseethepacket
sizedependencein queuing delayof UDP streamsof >7G%X byte and <%G�X (or more) byte packets,wherethe delayclearly
increasesasthepacketsizeincreases,althoughthebit rateof >7G%X bytepacketsis tentimeslargerthanthatof <�G%X (or more)
bytepackets.In addition, we alsoseethepacket typedependencein thequeuing delayof UDP andICMP streamsof >�G�X
byte, <�G%X byte, _%G�X byte,and >�G�G%X bytepackets. On onehand,themeanvaluesof thequeuing delayof UDP andICMP
streamsof >�G�X bytepacketsarerelatively close,although thebit rateof UDP streamis a hundredtimeslargerthanthatof
ICMP stream.On theotherhand, the ICMP streamof <�G%X (or more)bytepacketsseemsto experiencea longer queuing
delaycomparedwith theUDP streamof thesamesizepackets,although thebit andpacket ratesof theICMP streamare
lower thanor nearely equal to thoseof the UDP stream. Although we suspectthat theremay exist a differencein the
queuing processin someroutersdepending not only on thesizebut alsothetypeof packets,further investigation should
berequired.

Next, theminimal one-way delaysfor various sizesof UDP/ICMPpacketsareexamined. Figure3 shows theminimal
one-way delaysfor varioussizesof packetsform a clearstraightline, from which thetransmissiondelay(proportional to
thesizeof a packet)andthepropagationdelay(independent of thesizeof apacket)canbepreciselyestimated.Sincethey
reflectthepath-internalstructure(theformer is relatedwith link bandwidth of eachlink andthelatteris mainlyaffectedby
thephysicaldistanceof eachlink), theprecisetime-stamping might beusefulfor detectingroute changesor hiddenstore-
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and-forwarddevices.For example, in Fig. 3, while thelinesproducedby UDPandICMP echorequestontheforward path
arealmostconsistent,theline by ICMP echoreplyonthebackwardpathhasthesameinclinebut is shiftedin parallelwith
anoffsetof about =@? =�F msec.This, at least,impliessomeasymmetricproperty relatedwith thepropagation delayof the
paths.

3.2. Inter-packet time for a bi-directional TCP packet stream

We measurethetime interval of eachpair of consecutivepacketsin onedirectionat thesendersideandthatat thereceiver
side,andcomparethem.

Theleft-hand sideof Fig. 4 shows thedistributionsof inter-packet time for a TCPdata(forward)streamat thesender
andthe receiver sides. The shortest inter-packet time of TCP datapacketsis about =@?`>7N msec,which is mostdominant
(more than F%= %) at the sender-side. This might comefrom consecutive >7G%X�X -byte packetsat the maximum rateof _�X
Mb/s corresponding to the back-to-backpacketssentfrom an interface of 100base-TX.Thenext shortestanddominant
inter-packet time at the sender-sideis about =Y? N msec.Thesetwo dominant inter-packet times,at least,imply the bursty
natureof TCPdatasendingmechanism.

The right-handsideof Fig. 4 shows the correlationbetweeninter-packet timesat the senderandthe receiver sides.
Apart from thecaseof back-to-back packetsthathave an initial inter-packet time lessthan =@? N msecat thesender-side, it
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Figure 4. Inter-packet time for a TCPdatastreamat thesender-sideandthereceiver-side.
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canbeseenthat the inter-packet time of two sendingpacketstendsto increaseor decreasein a degreeof =Y?Z> msecat the
receiver-side.Theincrement andthedecrementmight imply thatsomepacketsarelikely to experienceanadditional delay
of =Y?Z> msec.

The left-handside of Fig. 5 shows the distributions of inter-packet time for a TCP ACK (backward) streamat the
senderandthereceiversides,while theright-handsideshows thecorrelationbetweeninter-packet timesat thesenderand
thereceiversides.Fromthesefigures,theinter-packet timeof TCPACK streamat thedatareceiver (i.e., theACK sender)
is likely to be =Y? N , =@? G , =Y? F , or =Y? X msec.Onepossiblescenariois thattheinter-arrival timeof TCPdataat thereceiver-side
TCPstackwould be =@? N msec(although themostdominant inter-packet time of TCPdataat thereceiver-sidenetwork is
=Y?Z>�N msecasshown in Fig. 4), andthereceiverTCPwould sendbackanACK every one,two, three,or four datapackets
received. On the other hand, at the datasender(i.e., the ACK receiver), morethan5% of TCP ACK packetshave very
shortinter-packet times(lessthan =@? =b> msec),which clearlyindicatesthedegree of ACK compression.

3.3. Inter-packet time for a uni-directional UDP packet stream by a DV application

Figure6 shows the distributions of inter-packet time in a UDP streamat the senderandthe receiver sides,generatedby
a DV streamingapplication. At the sender-side, the inter-packet time of =@? Bbc , =Y? N%< , and =@? < msecs,that is, threelevels
of sendingrates(29 Mb/s, 43 Mb/s, and22 Mb/s), aresignificantlydominant. The sub-figure within Fig. 6 shows the
distribution of very few packetswith nearly peakrates,which indicates that the peakrate of 98 Mb/s (limited by the
sender’s network interface)rarelyappears.To know about suchpropertiesof thesendingrateof high-speedapplications
mightprovide crucial informationto bandwidth dimensioning.
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4. CONCLUSION

Weconductedexperimentsonnetwork characteristicmeasurementsusingahardware-basedprecisetime-stamping system,
which could synchronizeto GPSwith a high resolutionof 0.0001 msecandwithin a smallerrorof 0.0003 msec.

Fromthemeasureddata,severalinterestingresultswereobtained: i) thedistribution of one-wayqueuing delayexhibits
a considerabledifferencedependingon thesizeandthetype(UDP/ICMP)of packets;ii) theminimal one-way delaysfor
varioussizesof UDP/ICMPpacketscouldgiveanaccurateestimateof thetransmissiondelay(proportional to thesizeof a
packet)andthepropagationdelay(independent of thesizeof apacket), whichmightbeusefulfor detecting routechanges
or hiddenstore-and-forwarddevices;iii) thecorrelation betweeninter-packet timesat thesenderandthereceiver sidesin
a TCPdatastreamindicatedtheburstynatureof TCPdatasending mechanism, andthecorrelation betweeninter-packet
timesat thesenderandthereceiver sidesin a TCPACK streamclearlyshowedthedegree of ACK compression;iv) the
distributionof inter-packet time in aUDPstreamgeneratedby aDV streamingapplication at thesender-sideindicatedthat



threelevelsof sendingrates(29 Mb/s, 43 Mb/s, and22 Mb/s) werecompletely dominant,andthe peakrateof 98 Mb/s
(limited by thesender’snetwork interface)rarelyappeared.

Althoughthefurther investigationon theseresultsremainsat this time,they would, at least,indicatetheusefulnessand
strongnecessityof precisetime-stamping with highresolution oncurrent andfuturehigh-speedlinks conveying high-speed
application traffic.
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