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Abstract— Measurements from an Internet backbone link car-
rying TCP traffic towards different ADSL areas are analyzed in
this paper. For traffic analysis, we adopt a flow based approach
and the popular mice/elephants dichotomy. The originality of the
experimental data reported in this paper, when compared with
previous measurements from very high speed backbone links, is
in that commercial traffic comprises a significant part generated
by peer-to-peer applications. This kind of traffic exhibits some
remarkable properties in terms of mice and elephants, which are
described in this paper. It turns out that by adopting a suitable
level of aggregation, the bit rate of mice can be described by means
of a Gaussian process. The bit rate of elephants is smoother than
that of mice and can also be well approximated by a Gaussian
process.

I. INTRODUCTION

Characterization of Internet traffic has become over the past
few years one of the major challenging issues in telecom-
munications networks. As a matter of fact, understanding the
composition and the dynamics of Internet traffic is essential for
network operators in order to offer quality of service and to
supervise their networks. Since the celebrated paper by Leland
et al [1] on the self-similar nature of Ethernet traffic in local
area networks, a huge amount of work has been devoted to
the characterization of Internet traffic. In particular, different
hypotheses and assumptions have been explored to explain the
reasons why and how Internet traffic should be self-similar (see
for instance [2], [3]).

A common approach to describing traffic in a backbone
network consists of observing the bit rate process evaluated
over fixed length intervals, say a few hundreds of milliseconds.
Long range dependence as well as self-similarity are two basic
properties of the bit rate process, which have been observed
through measurements in many different situations. Different
characterizations of the fractal nature of traffic have been
proposed in the literature (see for instance Norros [4] on the
mono-fractal characterization of traffic and Levy-Véhel et al
[5], Abry et al [6] on the multi-fractal properties of traffic).
An exhaustive account to fractal characterization of Internet
traffic can be found in the book by Park and Willinger [7].

Even though long range dependence and self similarity
properties are very intriguing from a theoretical point of
view, their significance in network design has recently been
questioned in the paper by Cao and Ramanan [8], where it
is shown that the overflow probability in a buffer fed with
the superposition of a large number of flows satisfying some
reasonable regularity assumptions can be well approximated
by that obtained when the input process is Poisson. While
the above result may not be directly applicable in an access

network with limited transmission capacities, the assumption of
a large number of flows is reasonable on a high speed backbone
link and are in favor of using a simple M/G/1 queue for buffer
dimensioning in a backbone network composed of gigarouters.

While self-similar models introduced so far in the literature
aims at describing the global traffic on a link, it is now usual
to distinguish short transfers (referred to as mice) and long
transfers (referred to as elephants) [9]. This dichotomy was
not totally clear up to a recent past (see for instance network
measurements from the MCI backbone network [10]). Now,
the discrimination between mice and elephants become more
and more evident with the emergence of peer-to-peer (p2p)
applications, which give rise to a large amount of traffic on a
small number of TCP connections, as it will be shown in the
following.

In this paper, we analyze TCP traffic on an Internet backbone
link collecting data in direction to several ADSL areas. The
primary goal of this paper is to draw attention to several salient
features of ADSL traffic. In particular, we consider commercial
traffic, which comprises a significant part of p2p traffic, giving
rise to very large elephants.

The above observation leads us to analyze ADSL traffic
by adopting a flow based approach and more precisely the
mice/elephants dichotomy. The intuitive definition of a mouse
is that such a flow comprises a small number of packets so that
it does not leave or leaves slightly the slow start regime. Thus, a
mouse is not very sensitive to the bandwidth sharing imposed
by TCP. On the contrary, elephants are sufficiently large so
that one may expect that elephants share the bandwidth of a
bottleneck according to the flow control mechanism of TCP.
As a consequence, mice and elephants have a totally different
behavior from a modeling point of view.

The organization of this paper is as follows: Basic definitions
are given in Section II. Mice traffic is analyzed in Section III,
where p2p and non p2p mice are handled separately. Elephants
traffic is described in Section IV. Finally, some concluding
remarks are presented in Section V.

II. TRAFFIC ANALYSIS USING MICE AND ELEPHANTS

Throughout this paper, we consider a 1 Gbps link between
the France Telecom IP backbone network and several ADSL
areas. Traffic originated or in direction to these different ADSL
areas is multiplexed on this single link. We observe TCP
traffic from the IP backbone network towards the ADSL areas
(downstream traffic). It is worth noting that traffic local to an
ADSL area cannot be observed in the collected data.



To analyze the traffic characteristics, we adopt the mice and
elephants dichotomy. There is no commonly adopted definition
for a mouse. A mouse is intuitively a data transfer, which does
not leave or leaves slightly the slow start period. In fact, a
mouse is a short data transfer, which has no time to adapt to
network conditions according to the TCP control loop.

As a convention, we adopt in this paper the following
definition: a mouse is a data transfer comprising a number of
packets less than or equal to 20 packets; a flow is terminated if
no packets of the flow have been observed for a time period of
5 seconds. Other definitions for mice are possible; for instance
in the paper by Zhang et al [11], a small data transfer contains
at most 104 bytes. If the MTU is equal to 1500 bytes, 104

bytes roughly correspond to 8 packets. The value of 20 packets
is chosen because if we assume that the maximum congestion
window size is 8Kbytes and if there is an ACK for each packet
received by the destination, then about 15 packets are necessary
to hit the maximum congestion window size in the slow start
phase.

The timer of 5 seconds may appear at first glance very sharp.
However, since we intend to describe the bit rate of mice, we
have to consider the data transfer phase of a mouse. Long mice
are mostly due to FIN segments, which arrive quite a long time
after the last data segment. This introduces some bias in the
evaluation of the duration of mice. To avoid this phenomenon,
we use the 5 s timer to remove segments, which are too far
away from data segments. The counterpart of this method is
that single packet mice artificially appear.
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Fig. 1. Flows on a backbone link.

The flow size distribution of downstream traffic on the
1 Gbps link is displayed in Figure 1(a). From this figure, it

turns out that the majority of flows comprise less than 1000
bytes and actually correspond, as shown in the following, to
mice. Even though these flows are the most numerous, they
contribute a very small proportion of the total amount of traffic,
as shown in Figure 1(b) representing the distribution of Xt/Zt,
where {Xt} is the amount of traffic due to mice and {Zt} is the
global bit rate process. Mice actually contribute about 6% of
global traffic but represent more than 97% of the total number
of flows.

Finally, on the link observed, more than 49% of traffic is
due to p2p applications (Kazaa, Morpheus, Edonkey, Gnutella,
etc.), as shown in Table I. In this table, only p2p traffic observ-
able via port numbers is reported. The significant proportion
of p2p traffic gives rise to remarkable phenomena, which are
described in the next sections.

Applications percentage
non p2p http 14.6

ftp 2.1
nntp 1.9
others 31.8
total non p2p traffic 50.4

p2p Edonkey 37.5
Kazaa&Morpheus 7.8
Napster 3.8
Gnutella 0.3
Total p2p traffic 49.6

TABLE I

COMPOSITION OF ADSL TRAFFIC PER APPLICATION.

III. CHARACTERISTICS OF MICE TRAFFIC

A. Analysis of mice

Figure 2 displays the distribution of the number of packets
and bytes comprised in a mouse. It turns out that the majority
of mice comprise less than 1000 bytes and as stated in the
previous section, the majority of flows are indeed mice (see
Figure 1(a)).

From Figure 2, we also observe that a large number of
mice are composed only of one or two packets. Single packet
mice are Reset segments, SYN segments, which are not really
associated to a mouse because of transaction interruption or
very long response times by servers, or FIN segments, which
arrive far away from the last data segments and which appear
as single packet mice because of the 5 s timer used to decide
whether a mouse is terminated. Moreover, a large number of
single packet mice are generated by p2p protocols.

Two packet mice are composed of SYN and FIN segments
only. This is due to the fact that a large number of TCP
connections (associated with HTTP transactions for instance)
are opened and immediately closed or not used at all; this may
be caused by too long response times by servers, which lead
users to interrupt their transactions, or by the fact that certain
implementations of HTTP systematically opens several TCP
connections in parallel. Actually, only a small number of mice
carry useful information (data segments). This phenomenon has
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Fig. 2. Distribution of the number of packets and bytes comprised in a mouse.

to be taken into account when characterizing the mice arrival
process, as shown in the following.

When analyzing more carefully the generation process of
mice, it turns out that mice generated by p2p protocols exhibit
a behavior, which is quite different from that of other mice
(regular mice related to usual applications using TCP, such
HTTP, ftp, etc.). This is why we analyze the two types of
mice separately. Note that since mice are not sensitive to TCP
fairness, global mice traffic is the superposition of p2p and non
p2p mice traffic; these two types of traffic do not really interact
one with each other.

B. Non p2p mice

In this section, we analyze mice, which are not generated
by p2p protocols, i.e., with port numbers different from 1214
(Kazaa), 4662 (Edonkey), 6346 (Gnutella) and other p2p pro-
tocol port numbers. The objective of this section is to describe
the bit rate process of those mice.

The process {X1
t } representing the bit rate offered by mice

evaluated over time intervals with length ∆ = 100 ms, is highly
varying as displayed in Figure 3(a). The “instantaneous” bit
rate has been observed over a time period of 4900 seconds
between 1:27 pm to 2:51 pm; only a time interval of 700
seconds is displayed in Figure 3(a). The empirical distribution
of X1

t is displayed in Figure 3(b). It turns out that this
distribution is very close a Gaussian distribution. It can actually
be shown (see [12] for details) that the process {X1

t } is indeed
Gaussian.

To explain the form of the curve of {X1
t }, let us describe

mouse traffic in more details. In a first step, we have observed
arrivals of individual mice. The mouse inter-arrival time is
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Fig. 3. Instantaneous bit rate and stationary distribution of the bit rate process
{X1

t } estimated over time intervals with length ∆ = 100 ms.

remarkably exponential and the mouse duration is Weibull
(see [12] for details). At first glance, one may conclude that
mice arrive according to a Poisson process. However, when
we compute the stationary distribution of the number of active
mice at an arbitrary instant, we should obtain a Poisson
distribution if the mouse arrival process were Poisson (namely,
the stationary distribution of the number of customers in an
M/G/∞ queue). In particular, if this were true, the variance
should be equal to the mean. However, experimental data show
that this last property is not verified. This is sufficient to show
that the mouse arrival process is not Poisson.

To overcome this problem, we note that, as mentioned
above, mice are actually not independent. In fact, for a same
destination IP address, a certain number of mice arrive near
one to each other, forming what we call is the following a
macro-mouse. We specifically define a macro-mouse as a set
of mice, which have the same destination address and which
arrive within a rather short time interval, say with a length of
1 second; moreover, a macro-mouse must comprise more than
one packet. The inter-arrival time of macro-mice is displayed in
Figure 4(b) and the distribution of their duration is displayed in
Figure 4(a). Their inter-arrival time is exponential with mean
1/λ = 0.00562. The probability distribution of the duration
of a macro-mouse can be well approximated by a Weibullian
distribution with scale parameter η = 1.78, skew parameter
β = 0.8, and location parameter equal to 0. The mean number
of mice in a macro-mouse is equal to 1.8.

When computing the stationary distribution of the number
of macro-mice active at a given instant, we get a Poisson
distribution. Moreover, the Arrival See Time Averages property
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Fig. 4. Characteristics of a mouse group.

is verified. Hence, we may reasonably conjecture that the
macro-mouse arrival process is Poisson. Thus, in spite of the
fact that the individual mouse arrival process is not Poisson,
grouping mice in an adequate manner yields a Poisson process.

When we consider the bit rate created by macro-mice, we
can adopt a fluid flow approach, i.e., by neglecting discrete
packet arrivals, we assume that the bit rate of a macro-mouse
is constant and equal to the number of bytes divided by the
duration of the macro-mouse. We then get the fluid approxima-
tion of the bit rate of the macro-mouse. The key point is in that
since the mean arrival rate λ of macro-mice is high, the fluid
bit rate of macro-mice converges in distribution to a Gaussian
process, which auto-correlation function is perfectly known.
This last property is crucially due to the fact that the macro-
mouse arrival process is Poisson. It follows that the actual
arrival bit rate can be approximated by a Gaussian process
perturbed by a white noise, which is due to discrete packet
arrivals. The autocorrelation function of the Gaussian process
is given by

c(t) =
E[Y 2(σ − t)+]

E[Y 2σ]
, (1)

and Y is the bit rate of the macro-mouse and σ is duration.
Finally, it remains a fraction of single packet mice, which are

not included in macro-mice. The bit rate created by these mice
is very small (a few tens of Kbps). We admit without more
details (see [12] for more information) that single packet mice
is very small and is in fact a white noise. With the collected
data, the mean and the variance of this white noise are equal
to m = 3668 bit/s and σ2 = 368, 195.71 (bit/s)2, respectively.

In conclusion, the bit rate created by macro-mice is basically

a Gaussian process perturbed by a white noise, which is due to
single packet mice and discrete packet arrivals. This can be ver-
ified by computing the empirical spectral function of the time
series {X1

t } and the theoretical spectral function corresponding
to the autocorrelation function defined by equation (1); see [12]
for more details.

C. P2p mice

We analyze in this section the traffic offered by p2p, i.e.,
mice with a port number corresponding to a p2p protocol.
Figure 5 represents the number of active p2p mice. Moreover, it
is possible to compute the empirical probability distribution of
the p2p mouse inter-arrival time [12]. While the p2p mouse
inter-arrival time is exponential, it clearly appears that the
process counting the number of active p2p mice is composed
of “bursts” as shown in Figure 5. Finally, the size of p2p mice
is rather small (in general less than 8 packets).
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Fig. 5. Number of active p2p mice.

As in the previous section, we are led to group mice
comprising more than one packet according to some criterion.
At a first glance, we may group p2p mice according their
source address. Intuitively, this criterion corresponds to the
fact that a member of a p2p network seeking a content sends
requests to different nodes. But this level of aggregation is
not sufficient because the process counting the aggregated p2p
mice on the basis their source address remains quite irregular. A
second level of aggregation consists of grouping the aggregated
p2p mice on the basis of their destination address. This is
motivated by the fact that the different hosts of the p2p network
respond to the request corresponding to an aggregated p2p
mice.

This second level of aggregation gives rise to macro p2p
mice, which are composed of p2p mice with the same address
source and/or the same destination address and arriving in a
time interval of 1 second. It turns out that the process counting
these p2p macro mice is indeed Poisson. This is checked by
considering the process counting the number of active p2p
macro mice over time. The resulting process is identical to
the occupation process of an M/G/∞ queue.

From a theoretical point of view, p2p macro mice can
be described as Poisson clouds. But, for characterizing their
offered bit rate, we can consider as in the previous section the
fluid bit rate of p2p macro mice. The fluid bit rate of a p2p
macro mouse is simply the quanitity of bit contained in a p2p
macro mouse divided by the duration of the mouse. The exact



bit rate can then be roughly approximated by the fluid bit rate
perturbed by a white noise; this latter white noise is due to
discrete packet arrivals. Finally, as in the previous section, it
remains a white noise due to single packet p2p mice.

The advantage of the above approach is in that the global
fluid bit rate of p2p macro mice can be approximated by a
Gaussian process, which autocorrelation function is given by
equation (1), where as above Y is the bit rate of a p2p macro
mouse and σ is its duration. As in the previous section, it turns
out that the bit rate of p2p mice can be described by means of
a Gaussian process perturbed by a white noise.

IV. CHARACTERISTICS OF ELEPHANTS

In this section, we investigate the bit rate created by ele-
phants. Figure 6 displays the global bit rate due to elephants
on the link. The first observation is that the bit rate of elephants
is large and much smoother than the bit rate of mice. In fact,
the bit rate of elephants is oscillating around a mean value.
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Fig. 6. Bit rate created by elephants.

While it is usually assumed that elephants share the trans-
mission capacity of a bottleneck according to some fairness
criterion (max-min or proportional fairness), we first have to
draw attention to the fact that certain elephants are by nature
with a very small bit rate. This is typically the case of elephants
composed of ACKs generated by a terminal retrieving a large
file. To eliminate those elephants, we have fixed a threshold
for the mean value of the length of packets contained in an
elephant. If the mean packet length is less than 80 bytes, this
certainly means that the elephant is merely composed of ACK
segments and its bit rate is small. Those elephants represent
a small fraction of the global bit rate of elephants and are
eliminated in the following. As a first approximation, these
elephants generate a bit rate, which is a constant plus a white
noise (due to discrete packet arrivals).

When examining the bit rate created by the remaining part
of the elephants, we come up with the conclusion that the link
is not congested (the global load is about 10 percent). Hence,
elephants are bottlenecked somewhere else in the network and
the transmission capacity of the observed link is not shared
by the TCP control loop. Thus, the M/G/1 processor sharing
queue cannot be directly used. In fact, in the case of ADSL
traffic, bottlenecks are frequently located on the link between
the broadband access server and the customer terminal. The

M/G/1 processor sharing queue may possibly be used for
such bottlenecks.

A more careful analysis of the dynamics of elephants shows
that the transmission of packets in elephants is not constant.
In fact, the transmission of data is composed of transmission
phases where a large number of packets are transmitted,
elapsed by periods, where only a few packets are transferred.
Thus, the transmission of packets during elephants is not
smooth but rather bursty. This phenomenon may be due to
various factors. One possible cause is that a p2p server does
not always serve the same TCP connection but may share its
resources in a round robin manner between different clients.
This may cause bursty transmission phases elapsed by less
active transmission periods. Nevertheless, it can be shown that
the bit rate created by elephants is still a Gaussian process.

V. CONCLUSION

We have analyzed in this paper TCP traffic delivered by
an IP backbone network to several ADSL areas. One salient
feature is that a significant part of global traffic is due to p2p
applications.

It is possible to decompose traffic into several components
on the basis of the mice/elephants dichotomy. By analyzing
each component separately and by adopting an adequate level
of aggregation, it is possible to describe each component by
means of a Gaussian process perturbed by a white noise. The
next step is to investigate how to characterize global traffic by
means of a few parameters only. Indeed, to monitor traffic and
to estimate the quality of service perceived by users (essentially
through the bit rates achieved by elephants), traffic traces shall
be analyzed but recording complete traffic traces would require
huge storage capacities and prohibitive off line processing.
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